File size: 24,030 Bytes
ee09f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-16 21:44:09,762 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,763 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-16 21:44:09,763 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
 - NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Train:  6183 sentences
2023-10-16 21:44:09,764         (train_with_dev=False, train_with_test=False)
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Training Params:
2023-10-16 21:44:09,764  - learning_rate: "5e-05" 
2023-10-16 21:44:09,764  - mini_batch_size: "4"
2023-10-16 21:44:09,764  - max_epochs: "10"
2023-10-16 21:44:09,764  - shuffle: "True"
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Plugins:
2023-10-16 21:44:09,764  - LinearScheduler | warmup_fraction: '0.1'
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Final evaluation on model from best epoch (best-model.pt)
2023-10-16 21:44:09,764  - metric: "('micro avg', 'f1-score')"
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Computation:
2023-10-16 21:44:09,764  - compute on device: cuda:0
2023-10-16 21:44:09,764  - embedding storage: none
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:09,764 ----------------------------------------------------------------------------------------------------
2023-10-16 21:44:16,668 epoch 1 - iter 154/1546 - loss 1.65007029 - time (sec): 6.90 - samples/sec: 1715.81 - lr: 0.000005 - momentum: 0.000000
2023-10-16 21:44:23,611 epoch 1 - iter 308/1546 - loss 0.94129662 - time (sec): 13.85 - samples/sec: 1714.44 - lr: 0.000010 - momentum: 0.000000
2023-10-16 21:44:30,625 epoch 1 - iter 462/1546 - loss 0.64763640 - time (sec): 20.86 - samples/sec: 1777.67 - lr: 0.000015 - momentum: 0.000000
2023-10-16 21:44:37,494 epoch 1 - iter 616/1546 - loss 0.52517050 - time (sec): 27.73 - samples/sec: 1772.61 - lr: 0.000020 - momentum: 0.000000
2023-10-16 21:44:44,367 epoch 1 - iter 770/1546 - loss 0.44714948 - time (sec): 34.60 - samples/sec: 1761.60 - lr: 0.000025 - momentum: 0.000000
2023-10-16 21:44:51,242 epoch 1 - iter 924/1546 - loss 0.39140356 - time (sec): 41.48 - samples/sec: 1762.58 - lr: 0.000030 - momentum: 0.000000
2023-10-16 21:44:58,147 epoch 1 - iter 1078/1546 - loss 0.35053117 - time (sec): 48.38 - samples/sec: 1776.97 - lr: 0.000035 - momentum: 0.000000
2023-10-16 21:45:05,162 epoch 1 - iter 1232/1546 - loss 0.32273432 - time (sec): 55.40 - samples/sec: 1793.05 - lr: 0.000040 - momentum: 0.000000
2023-10-16 21:45:12,237 epoch 1 - iter 1386/1546 - loss 0.29966657 - time (sec): 62.47 - samples/sec: 1779.42 - lr: 0.000045 - momentum: 0.000000
2023-10-16 21:45:19,081 epoch 1 - iter 1540/1546 - loss 0.28039720 - time (sec): 69.32 - samples/sec: 1787.73 - lr: 0.000050 - momentum: 0.000000
2023-10-16 21:45:19,336 ----------------------------------------------------------------------------------------------------
2023-10-16 21:45:19,336 EPOCH 1 done: loss 0.2799 - lr: 0.000050
2023-10-16 21:45:21,072 DEV : loss 0.0895804762840271 - f1-score (micro avg)  0.637
2023-10-16 21:45:21,095 saving best model
2023-10-16 21:45:21,441 ----------------------------------------------------------------------------------------------------
2023-10-16 21:45:28,278 epoch 2 - iter 154/1546 - loss 0.09243588 - time (sec): 6.84 - samples/sec: 1772.05 - lr: 0.000049 - momentum: 0.000000
2023-10-16 21:45:35,087 epoch 2 - iter 308/1546 - loss 0.10563878 - time (sec): 13.65 - samples/sec: 1755.06 - lr: 0.000049 - momentum: 0.000000
2023-10-16 21:45:42,042 epoch 2 - iter 462/1546 - loss 0.10498928 - time (sec): 20.60 - samples/sec: 1786.65 - lr: 0.000048 - momentum: 0.000000
2023-10-16 21:45:48,905 epoch 2 - iter 616/1546 - loss 0.10253956 - time (sec): 27.46 - samples/sec: 1779.24 - lr: 0.000048 - momentum: 0.000000
2023-10-16 21:45:55,770 epoch 2 - iter 770/1546 - loss 0.10307917 - time (sec): 34.33 - samples/sec: 1793.99 - lr: 0.000047 - momentum: 0.000000
2023-10-16 21:46:02,644 epoch 2 - iter 924/1546 - loss 0.10366383 - time (sec): 41.20 - samples/sec: 1775.94 - lr: 0.000047 - momentum: 0.000000
2023-10-16 21:46:09,503 epoch 2 - iter 1078/1546 - loss 0.10275984 - time (sec): 48.06 - samples/sec: 1780.26 - lr: 0.000046 - momentum: 0.000000
2023-10-16 21:46:16,416 epoch 2 - iter 1232/1546 - loss 0.10145230 - time (sec): 54.97 - samples/sec: 1779.20 - lr: 0.000046 - momentum: 0.000000
2023-10-16 21:46:23,230 epoch 2 - iter 1386/1546 - loss 0.09850958 - time (sec): 61.79 - samples/sec: 1784.50 - lr: 0.000045 - momentum: 0.000000
2023-10-16 21:46:30,555 epoch 2 - iter 1540/1546 - loss 0.09639554 - time (sec): 69.11 - samples/sec: 1791.82 - lr: 0.000044 - momentum: 0.000000
2023-10-16 21:46:30,812 ----------------------------------------------------------------------------------------------------
2023-10-16 21:46:30,812 EPOCH 2 done: loss 0.0961 - lr: 0.000044
2023-10-16 21:46:32,814 DEV : loss 0.0685592070221901 - f1-score (micro avg)  0.7696
2023-10-16 21:46:32,827 saving best model
2023-10-16 21:46:33,306 ----------------------------------------------------------------------------------------------------
2023-10-16 21:46:40,223 epoch 3 - iter 154/1546 - loss 0.06577964 - time (sec): 6.91 - samples/sec: 1853.17 - lr: 0.000044 - momentum: 0.000000
2023-10-16 21:46:46,999 epoch 3 - iter 308/1546 - loss 0.06885278 - time (sec): 13.69 - samples/sec: 1832.42 - lr: 0.000043 - momentum: 0.000000
2023-10-16 21:46:53,930 epoch 3 - iter 462/1546 - loss 0.07613517 - time (sec): 20.62 - samples/sec: 1828.52 - lr: 0.000043 - momentum: 0.000000
2023-10-16 21:47:00,686 epoch 3 - iter 616/1546 - loss 0.07339670 - time (sec): 27.38 - samples/sec: 1822.81 - lr: 0.000042 - momentum: 0.000000
2023-10-16 21:47:07,536 epoch 3 - iter 770/1546 - loss 0.07279666 - time (sec): 34.23 - samples/sec: 1827.46 - lr: 0.000042 - momentum: 0.000000
2023-10-16 21:47:14,494 epoch 3 - iter 924/1546 - loss 0.07159335 - time (sec): 41.19 - samples/sec: 1818.28 - lr: 0.000041 - momentum: 0.000000
2023-10-16 21:47:21,360 epoch 3 - iter 1078/1546 - loss 0.06968918 - time (sec): 48.05 - samples/sec: 1814.87 - lr: 0.000041 - momentum: 0.000000
2023-10-16 21:47:28,153 epoch 3 - iter 1232/1546 - loss 0.06933368 - time (sec): 54.84 - samples/sec: 1802.51 - lr: 0.000040 - momentum: 0.000000
2023-10-16 21:47:35,020 epoch 3 - iter 1386/1546 - loss 0.06859729 - time (sec): 61.71 - samples/sec: 1812.58 - lr: 0.000039 - momentum: 0.000000
2023-10-16 21:47:41,777 epoch 3 - iter 1540/1546 - loss 0.06849329 - time (sec): 68.47 - samples/sec: 1810.30 - lr: 0.000039 - momentum: 0.000000
2023-10-16 21:47:42,035 ----------------------------------------------------------------------------------------------------
2023-10-16 21:47:42,035 EPOCH 3 done: loss 0.0685 - lr: 0.000039
2023-10-16 21:47:44,051 DEV : loss 0.08517798036336899 - f1-score (micro avg)  0.7447
2023-10-16 21:47:44,063 ----------------------------------------------------------------------------------------------------
2023-10-16 21:47:51,034 epoch 4 - iter 154/1546 - loss 0.05538366 - time (sec): 6.97 - samples/sec: 1785.10 - lr: 0.000038 - momentum: 0.000000
2023-10-16 21:47:57,870 epoch 4 - iter 308/1546 - loss 0.05887323 - time (sec): 13.81 - samples/sec: 1724.84 - lr: 0.000038 - momentum: 0.000000
2023-10-16 21:48:04,737 epoch 4 - iter 462/1546 - loss 0.05491630 - time (sec): 20.67 - samples/sec: 1741.61 - lr: 0.000037 - momentum: 0.000000
2023-10-16 21:48:11,492 epoch 4 - iter 616/1546 - loss 0.05243751 - time (sec): 27.43 - samples/sec: 1758.25 - lr: 0.000037 - momentum: 0.000000
2023-10-16 21:48:18,347 epoch 4 - iter 770/1546 - loss 0.05291705 - time (sec): 34.28 - samples/sec: 1778.29 - lr: 0.000036 - momentum: 0.000000
2023-10-16 21:48:25,115 epoch 4 - iter 924/1546 - loss 0.05316064 - time (sec): 41.05 - samples/sec: 1782.75 - lr: 0.000036 - momentum: 0.000000
2023-10-16 21:48:31,936 epoch 4 - iter 1078/1546 - loss 0.05226355 - time (sec): 47.87 - samples/sec: 1787.50 - lr: 0.000035 - momentum: 0.000000
2023-10-16 21:48:38,834 epoch 4 - iter 1232/1546 - loss 0.05147292 - time (sec): 54.77 - samples/sec: 1793.52 - lr: 0.000034 - momentum: 0.000000
2023-10-16 21:48:45,749 epoch 4 - iter 1386/1546 - loss 0.04971427 - time (sec): 61.68 - samples/sec: 1797.52 - lr: 0.000034 - momentum: 0.000000
2023-10-16 21:48:52,720 epoch 4 - iter 1540/1546 - loss 0.04975106 - time (sec): 68.66 - samples/sec: 1804.48 - lr: 0.000033 - momentum: 0.000000
2023-10-16 21:48:52,978 ----------------------------------------------------------------------------------------------------
2023-10-16 21:48:52,978 EPOCH 4 done: loss 0.0497 - lr: 0.000033
2023-10-16 21:48:55,028 DEV : loss 0.09497705101966858 - f1-score (micro avg)  0.7821
2023-10-16 21:48:55,040 saving best model
2023-10-16 21:48:55,509 ----------------------------------------------------------------------------------------------------
2023-10-16 21:49:02,349 epoch 5 - iter 154/1546 - loss 0.01734854 - time (sec): 6.83 - samples/sec: 1839.45 - lr: 0.000033 - momentum: 0.000000
2023-10-16 21:49:09,103 epoch 5 - iter 308/1546 - loss 0.02591889 - time (sec): 13.58 - samples/sec: 1813.31 - lr: 0.000032 - momentum: 0.000000
2023-10-16 21:49:15,969 epoch 5 - iter 462/1546 - loss 0.03215375 - time (sec): 20.45 - samples/sec: 1762.51 - lr: 0.000032 - momentum: 0.000000
2023-10-16 21:49:22,877 epoch 5 - iter 616/1546 - loss 0.03561342 - time (sec): 27.36 - samples/sec: 1798.27 - lr: 0.000031 - momentum: 0.000000
2023-10-16 21:49:29,717 epoch 5 - iter 770/1546 - loss 0.04014613 - time (sec): 34.20 - samples/sec: 1807.31 - lr: 0.000031 - momentum: 0.000000
2023-10-16 21:49:36,641 epoch 5 - iter 924/1546 - loss 0.04102622 - time (sec): 41.12 - samples/sec: 1818.94 - lr: 0.000030 - momentum: 0.000000
2023-10-16 21:49:43,561 epoch 5 - iter 1078/1546 - loss 0.03999871 - time (sec): 48.04 - samples/sec: 1820.62 - lr: 0.000029 - momentum: 0.000000
2023-10-16 21:49:50,438 epoch 5 - iter 1232/1546 - loss 0.04053831 - time (sec): 54.92 - samples/sec: 1816.84 - lr: 0.000029 - momentum: 0.000000
2023-10-16 21:49:57,266 epoch 5 - iter 1386/1546 - loss 0.04007914 - time (sec): 61.75 - samples/sec: 1811.89 - lr: 0.000028 - momentum: 0.000000
2023-10-16 21:50:04,082 epoch 5 - iter 1540/1546 - loss 0.03801735 - time (sec): 68.56 - samples/sec: 1807.74 - lr: 0.000028 - momentum: 0.000000
2023-10-16 21:50:04,338 ----------------------------------------------------------------------------------------------------
2023-10-16 21:50:04,338 EPOCH 5 done: loss 0.0380 - lr: 0.000028
2023-10-16 21:50:06,356 DEV : loss 0.09318046271800995 - f1-score (micro avg)  0.7782
2023-10-16 21:50:06,368 ----------------------------------------------------------------------------------------------------
2023-10-16 21:50:13,194 epoch 6 - iter 154/1546 - loss 0.02556469 - time (sec): 6.82 - samples/sec: 1809.18 - lr: 0.000027 - momentum: 0.000000
2023-10-16 21:50:20,094 epoch 6 - iter 308/1546 - loss 0.03097773 - time (sec): 13.72 - samples/sec: 1736.11 - lr: 0.000027 - momentum: 0.000000
2023-10-16 21:50:26,958 epoch 6 - iter 462/1546 - loss 0.02965652 - time (sec): 20.59 - samples/sec: 1746.62 - lr: 0.000026 - momentum: 0.000000
2023-10-16 21:50:33,830 epoch 6 - iter 616/1546 - loss 0.02790282 - time (sec): 27.46 - samples/sec: 1771.83 - lr: 0.000026 - momentum: 0.000000
2023-10-16 21:50:40,624 epoch 6 - iter 770/1546 - loss 0.02749592 - time (sec): 34.25 - samples/sec: 1771.92 - lr: 0.000025 - momentum: 0.000000
2023-10-16 21:50:47,433 epoch 6 - iter 924/1546 - loss 0.02610977 - time (sec): 41.06 - samples/sec: 1768.73 - lr: 0.000024 - momentum: 0.000000
2023-10-16 21:50:54,284 epoch 6 - iter 1078/1546 - loss 0.02639060 - time (sec): 47.91 - samples/sec: 1772.33 - lr: 0.000024 - momentum: 0.000000
2023-10-16 21:51:01,306 epoch 6 - iter 1232/1546 - loss 0.02605220 - time (sec): 54.94 - samples/sec: 1777.47 - lr: 0.000023 - momentum: 0.000000
2023-10-16 21:51:08,170 epoch 6 - iter 1386/1546 - loss 0.02522412 - time (sec): 61.80 - samples/sec: 1771.19 - lr: 0.000023 - momentum: 0.000000
2023-10-16 21:51:15,235 epoch 6 - iter 1540/1546 - loss 0.02642731 - time (sec): 68.87 - samples/sec: 1795.68 - lr: 0.000022 - momentum: 0.000000
2023-10-16 21:51:15,502 ----------------------------------------------------------------------------------------------------
2023-10-16 21:51:15,502 EPOCH 6 done: loss 0.0266 - lr: 0.000022
2023-10-16 21:51:17,895 DEV : loss 0.10446853190660477 - f1-score (micro avg)  0.7795
2023-10-16 21:51:17,908 ----------------------------------------------------------------------------------------------------
2023-10-16 21:51:24,779 epoch 7 - iter 154/1546 - loss 0.02404472 - time (sec): 6.87 - samples/sec: 1839.81 - lr: 0.000022 - momentum: 0.000000
2023-10-16 21:51:31,664 epoch 7 - iter 308/1546 - loss 0.02056482 - time (sec): 13.75 - samples/sec: 1861.72 - lr: 0.000021 - momentum: 0.000000
2023-10-16 21:51:38,496 epoch 7 - iter 462/1546 - loss 0.02046697 - time (sec): 20.59 - samples/sec: 1840.24 - lr: 0.000021 - momentum: 0.000000
2023-10-16 21:51:45,451 epoch 7 - iter 616/1546 - loss 0.02166477 - time (sec): 27.54 - samples/sec: 1809.86 - lr: 0.000020 - momentum: 0.000000
2023-10-16 21:51:52,463 epoch 7 - iter 770/1546 - loss 0.02146336 - time (sec): 34.55 - samples/sec: 1805.13 - lr: 0.000019 - momentum: 0.000000
2023-10-16 21:51:59,383 epoch 7 - iter 924/1546 - loss 0.02253466 - time (sec): 41.47 - samples/sec: 1791.51 - lr: 0.000019 - momentum: 0.000000
2023-10-16 21:52:06,243 epoch 7 - iter 1078/1546 - loss 0.02170121 - time (sec): 48.33 - samples/sec: 1787.33 - lr: 0.000018 - momentum: 0.000000
2023-10-16 21:52:13,045 epoch 7 - iter 1232/1546 - loss 0.02115814 - time (sec): 55.14 - samples/sec: 1788.46 - lr: 0.000018 - momentum: 0.000000
2023-10-16 21:52:19,960 epoch 7 - iter 1386/1546 - loss 0.02075815 - time (sec): 62.05 - samples/sec: 1795.57 - lr: 0.000017 - momentum: 0.000000
2023-10-16 21:52:26,876 epoch 7 - iter 1540/1546 - loss 0.02048075 - time (sec): 68.97 - samples/sec: 1796.06 - lr: 0.000017 - momentum: 0.000000
2023-10-16 21:52:27,154 ----------------------------------------------------------------------------------------------------
2023-10-16 21:52:27,154 EPOCH 7 done: loss 0.0204 - lr: 0.000017
2023-10-16 21:52:29,150 DEV : loss 0.11760783195495605 - f1-score (micro avg)  0.7724
2023-10-16 21:52:29,163 ----------------------------------------------------------------------------------------------------
2023-10-16 21:52:36,119 epoch 8 - iter 154/1546 - loss 0.00904914 - time (sec): 6.96 - samples/sec: 1799.83 - lr: 0.000016 - momentum: 0.000000
2023-10-16 21:52:43,087 epoch 8 - iter 308/1546 - loss 0.01120019 - time (sec): 13.92 - samples/sec: 1821.61 - lr: 0.000016 - momentum: 0.000000
2023-10-16 21:52:49,903 epoch 8 - iter 462/1546 - loss 0.01332359 - time (sec): 20.74 - samples/sec: 1822.53 - lr: 0.000015 - momentum: 0.000000
2023-10-16 21:52:56,846 epoch 8 - iter 616/1546 - loss 0.01192538 - time (sec): 27.68 - samples/sec: 1842.43 - lr: 0.000014 - momentum: 0.000000
2023-10-16 21:53:03,643 epoch 8 - iter 770/1546 - loss 0.01078426 - time (sec): 34.48 - samples/sec: 1815.73 - lr: 0.000014 - momentum: 0.000000
2023-10-16 21:53:10,438 epoch 8 - iter 924/1546 - loss 0.01161029 - time (sec): 41.27 - samples/sec: 1813.84 - lr: 0.000013 - momentum: 0.000000
2023-10-16 21:53:17,145 epoch 8 - iter 1078/1546 - loss 0.01243620 - time (sec): 47.98 - samples/sec: 1810.28 - lr: 0.000013 - momentum: 0.000000
2023-10-16 21:53:23,967 epoch 8 - iter 1232/1546 - loss 0.01233856 - time (sec): 54.80 - samples/sec: 1804.05 - lr: 0.000012 - momentum: 0.000000
2023-10-16 21:53:30,776 epoch 8 - iter 1386/1546 - loss 0.01272431 - time (sec): 61.61 - samples/sec: 1800.38 - lr: 0.000012 - momentum: 0.000000
2023-10-16 21:53:37,834 epoch 8 - iter 1540/1546 - loss 0.01300626 - time (sec): 68.67 - samples/sec: 1804.05 - lr: 0.000011 - momentum: 0.000000
2023-10-16 21:53:38,096 ----------------------------------------------------------------------------------------------------
2023-10-16 21:53:38,096 EPOCH 8 done: loss 0.0130 - lr: 0.000011
2023-10-16 21:53:40,162 DEV : loss 0.11045785248279572 - f1-score (micro avg)  0.7898
2023-10-16 21:53:40,175 saving best model
2023-10-16 21:53:40,649 ----------------------------------------------------------------------------------------------------
2023-10-16 21:53:47,486 epoch 9 - iter 154/1546 - loss 0.00775423 - time (sec): 6.83 - samples/sec: 1831.86 - lr: 0.000011 - momentum: 0.000000
2023-10-16 21:53:54,019 epoch 9 - iter 308/1546 - loss 0.00790082 - time (sec): 13.36 - samples/sec: 1827.72 - lr: 0.000010 - momentum: 0.000000
2023-10-16 21:54:00,556 epoch 9 - iter 462/1546 - loss 0.00714745 - time (sec): 19.90 - samples/sec: 1837.52 - lr: 0.000009 - momentum: 0.000000
2023-10-16 21:54:07,065 epoch 9 - iter 616/1546 - loss 0.00761023 - time (sec): 26.41 - samples/sec: 1842.09 - lr: 0.000009 - momentum: 0.000000
2023-10-16 21:54:13,656 epoch 9 - iter 770/1546 - loss 0.00769417 - time (sec): 33.00 - samples/sec: 1841.10 - lr: 0.000008 - momentum: 0.000000
2023-10-16 21:54:20,344 epoch 9 - iter 924/1546 - loss 0.00778298 - time (sec): 39.69 - samples/sec: 1855.33 - lr: 0.000008 - momentum: 0.000000
2023-10-16 21:54:26,945 epoch 9 - iter 1078/1546 - loss 0.00794647 - time (sec): 46.29 - samples/sec: 1864.63 - lr: 0.000007 - momentum: 0.000000
2023-10-16 21:54:33,540 epoch 9 - iter 1232/1546 - loss 0.00813811 - time (sec): 52.89 - samples/sec: 1864.94 - lr: 0.000007 - momentum: 0.000000
2023-10-16 21:54:40,134 epoch 9 - iter 1386/1546 - loss 0.00823860 - time (sec): 59.48 - samples/sec: 1871.30 - lr: 0.000006 - momentum: 0.000000
2023-10-16 21:54:46,726 epoch 9 - iter 1540/1546 - loss 0.00873508 - time (sec): 66.07 - samples/sec: 1876.32 - lr: 0.000006 - momentum: 0.000000
2023-10-16 21:54:46,975 ----------------------------------------------------------------------------------------------------
2023-10-16 21:54:46,975 EPOCH 9 done: loss 0.0087 - lr: 0.000006
2023-10-16 21:54:48,998 DEV : loss 0.11864420771598816 - f1-score (micro avg)  0.7941
2023-10-16 21:54:49,011 saving best model
2023-10-16 21:54:49,452 ----------------------------------------------------------------------------------------------------
2023-10-16 21:54:56,289 epoch 10 - iter 154/1546 - loss 0.00586620 - time (sec): 6.83 - samples/sec: 1818.10 - lr: 0.000005 - momentum: 0.000000
2023-10-16 21:55:03,238 epoch 10 - iter 308/1546 - loss 0.00524542 - time (sec): 13.78 - samples/sec: 1808.72 - lr: 0.000004 - momentum: 0.000000
2023-10-16 21:55:10,143 epoch 10 - iter 462/1546 - loss 0.00563260 - time (sec): 20.69 - samples/sec: 1780.72 - lr: 0.000004 - momentum: 0.000000
2023-10-16 21:55:17,083 epoch 10 - iter 616/1546 - loss 0.00560671 - time (sec): 27.63 - samples/sec: 1810.14 - lr: 0.000003 - momentum: 0.000000
2023-10-16 21:55:23,981 epoch 10 - iter 770/1546 - loss 0.00551268 - time (sec): 34.53 - samples/sec: 1798.02 - lr: 0.000003 - momentum: 0.000000
2023-10-16 21:55:30,938 epoch 10 - iter 924/1546 - loss 0.00541465 - time (sec): 41.48 - samples/sec: 1806.94 - lr: 0.000002 - momentum: 0.000000
2023-10-16 21:55:37,821 epoch 10 - iter 1078/1546 - loss 0.00581212 - time (sec): 48.37 - samples/sec: 1798.64 - lr: 0.000002 - momentum: 0.000000
2023-10-16 21:55:44,637 epoch 10 - iter 1232/1546 - loss 0.00550965 - time (sec): 55.18 - samples/sec: 1802.49 - lr: 0.000001 - momentum: 0.000000
2023-10-16 21:55:51,547 epoch 10 - iter 1386/1546 - loss 0.00535177 - time (sec): 62.09 - samples/sec: 1793.62 - lr: 0.000001 - momentum: 0.000000
2023-10-16 21:55:58,452 epoch 10 - iter 1540/1546 - loss 0.00556052 - time (sec): 69.00 - samples/sec: 1791.86 - lr: 0.000000 - momentum: 0.000000
2023-10-16 21:55:58,718 ----------------------------------------------------------------------------------------------------
2023-10-16 21:55:58,719 EPOCH 10 done: loss 0.0055 - lr: 0.000000
2023-10-16 21:56:00,754 DEV : loss 0.1224876418709755 - f1-score (micro avg)  0.7966
2023-10-16 21:56:00,767 saving best model
2023-10-16 21:56:01,611 ----------------------------------------------------------------------------------------------------
2023-10-16 21:56:01,612 Loading model from best epoch ...
2023-10-16 21:56:03,412 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-16 21:56:09,090 
Results:
- F-score (micro) 0.8125
- F-score (macro) 0.7224
- Accuracy 0.7061

By class:
              precision    recall  f1-score   support

         LOC     0.8716    0.8467    0.8590       946
    BUILDING     0.6347    0.5730    0.6023       185
      STREET     0.6667    0.7500    0.7059        56

   micro avg     0.8259    0.7995    0.8125      1187
   macro avg     0.7243    0.7232    0.7224      1187
weighted avg     0.8250    0.7995    0.8117      1187

2023-10-16 21:56:09,090 ----------------------------------------------------------------------------------------------------