File size: 1,899 Bytes
ff44d55 4be4c2c ff44d55 4be4c2c ff44d55 4be4c2c ff44d55 4be4c2c ff44d55 4be4c2c ff44d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper_large_Somali
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs so_so
type: google/fleurs
config: null
split: None
metrics:
- name: Wer
type: wer
value: 55.04238164151334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper_large_Somali
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs so_so dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0039
- Wer: 55.0424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0012 | 38.44 | 500 | 1.8906 | 55.4145 |
| 0.0004 | 76.89 | 1000 | 2.0039 | 55.0424 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|