--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: Whisper_small_Korean results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs ko_kr type: google/fleurs config: ko_kr split: test metrics: - type: wer value: 13.012854375770383 name: Wer --- # Whisper_small_Korean This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs ko_kr dataset. It achieves the following results on the evaluation set: - Loss: 0.3315 - Wer: 13.0129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0005 | 35.69 | 500 | 0.3188 | 13.0305 | | 0.0003 | 71.41 | 1000 | 0.3315 | 13.0129 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2