update model to query
Browse files- document_0_SentenceTransformer/1_Pooling/config.json +0 -10
- document_0_SentenceTransformer/README.md +0 -254
- document_0_SentenceTransformer/config.json +0 -45
- document_0_SentenceTransformer/config_sentence_transformers.json +0 -14
- document_0_SentenceTransformer/model.safetensors +0 -3
- document_0_SentenceTransformer/modules.json +0 -14
- document_0_SentenceTransformer/sentence_bert_config.json +0 -4
- document_0_SentenceTransformer/special_tokens_map.json +0 -37
- document_0_SentenceTransformer/tokenizer.json +0 -0
- document_0_SentenceTransformer/tokenizer_config.json +0 -945
- query_0_SentenceTransformer/README.md +0 -147
- query_0_SentenceTransformer/config_sentence_transformers.json +0 -14
- query_0_SentenceTransformer/model.safetensors +0 -3
- query_0_SentenceTransformer/modules.json +0 -14
- query_0_SentenceTransformer/tokenizer.json +0 -0
- router_config.json +0 -18
document_0_SentenceTransformer/1_Pooling/config.json
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"word_embedding_dimension": 768,
|
| 3 |
-
"pooling_mode_cls_token": true,
|
| 4 |
-
"pooling_mode_mean_tokens": false,
|
| 5 |
-
"pooling_mode_max_tokens": false,
|
| 6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
-
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken": false,
|
| 9 |
-
"include_prompt": true
|
| 10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/README.md
DELETED
|
@@ -1,254 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
base_model:
|
| 6 |
-
- answerdotai/ModernBERT-base
|
| 7 |
-
base_model_relation: finetune
|
| 8 |
-
pipeline_tag: sentence-similarity
|
| 9 |
-
library_name: transformers
|
| 10 |
-
tags:
|
| 11 |
-
- sentence-transformers
|
| 12 |
-
- mteb
|
| 13 |
-
- embedding
|
| 14 |
-
- transformers.js
|
| 15 |
-
- text-embeddings-inference
|
| 16 |
-
---
|
| 17 |
-
|
| 18 |
-
# gte-modernbert-base
|
| 19 |
-
|
| 20 |
-
We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
|
| 21 |
-
|
| 22 |
-
The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.
|
| 23 |
-
|
| 24 |
-
## Model Overview
|
| 25 |
-
|
| 26 |
-
- Developed by: Tongyi Lab, Alibaba Group
|
| 27 |
-
- Model Type: Text Embedding
|
| 28 |
-
- Primary Language: English
|
| 29 |
-
- Model Size: 149M
|
| 30 |
-
- Max Input Length: 8192 tokens
|
| 31 |
-
- Output Dimension: 768
|
| 32 |
-
|
| 33 |
-
### Model list
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
| Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|
| 37 |
-
|:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
|
| 38 |
-
| [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 64.38 | 55.33 | 87.57 | 79.31 |
|
| 39 |
-
| [`gte-reranker-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
|
| 40 |
-
|
| 41 |
-
## Usage
|
| 42 |
-
|
| 43 |
-
> [!TIP]
|
| 44 |
-
> For `transformers` and `sentence-transformers`, if your GPU supports it, the efficient Flash Attention 2 will be used automatically if you have `flash_attn` installed. It is not mandatory.
|
| 45 |
-
>
|
| 46 |
-
> ```bash
|
| 47 |
-
> pip install flash_attn
|
| 48 |
-
> ```
|
| 49 |
-
|
| 50 |
-
Use with `transformers`
|
| 51 |
-
|
| 52 |
-
```python
|
| 53 |
-
# Requires transformers>=4.48.0
|
| 54 |
-
|
| 55 |
-
import torch.nn.functional as F
|
| 56 |
-
from transformers import AutoModel, AutoTokenizer
|
| 57 |
-
|
| 58 |
-
input_texts = [
|
| 59 |
-
"what is the capital of China?",
|
| 60 |
-
"how to implement quick sort in python?",
|
| 61 |
-
"Beijing",
|
| 62 |
-
"sorting algorithms"
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
model_path = "Alibaba-NLP/gte-modernbert-base"
|
| 66 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 67 |
-
model = AutoModel.from_pretrained(model_path)
|
| 68 |
-
|
| 69 |
-
# Tokenize the input texts
|
| 70 |
-
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
|
| 71 |
-
|
| 72 |
-
outputs = model(**batch_dict)
|
| 73 |
-
embeddings = outputs.last_hidden_state[:, 0]
|
| 74 |
-
|
| 75 |
-
# (Optionally) normalize embeddings
|
| 76 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 77 |
-
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
| 78 |
-
print(scores.tolist())
|
| 79 |
-
# [[42.89073944091797, 71.30911254882812, 33.664554595947266]]
|
| 80 |
-
```
|
| 81 |
-
|
| 82 |
-
Use with `sentence-transformers`:
|
| 83 |
-
|
| 84 |
-
```python
|
| 85 |
-
# Requires transformers>=4.48.0
|
| 86 |
-
from sentence_transformers import SentenceTransformer
|
| 87 |
-
from sentence_transformers.util import cos_sim
|
| 88 |
-
|
| 89 |
-
input_texts = [
|
| 90 |
-
"what is the capital of China?",
|
| 91 |
-
"how to implement quick sort in python?",
|
| 92 |
-
"Beijing",
|
| 93 |
-
"sorting algorithms"
|
| 94 |
-
]
|
| 95 |
-
|
| 96 |
-
model = SentenceTransformer("Alibaba-NLP/gte-modernbert-base")
|
| 97 |
-
embeddings = model.encode(input_texts)
|
| 98 |
-
print(embeddings.shape)
|
| 99 |
-
# (4, 768)
|
| 100 |
-
|
| 101 |
-
similarities = cos_sim(embeddings[0], embeddings[1:])
|
| 102 |
-
print(similarities)
|
| 103 |
-
# tensor([[0.4289, 0.7131, 0.3366]])
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
Use with `transformers.js`:
|
| 107 |
-
|
| 108 |
-
```js
|
| 109 |
-
// npm i @huggingface/transformers
|
| 110 |
-
import { pipeline, matmul } from "@huggingface/transformers";
|
| 111 |
-
|
| 112 |
-
// Create a feature extraction pipeline
|
| 113 |
-
const extractor = await pipeline(
|
| 114 |
-
"feature-extraction",
|
| 115 |
-
"Alibaba-NLP/gte-modernbert-base",
|
| 116 |
-
{ dtype: "fp32" }, // Supported options: "fp32", "fp16", "q8", "q4", "q4f16"
|
| 117 |
-
);
|
| 118 |
-
|
| 119 |
-
// Embed queries and documents
|
| 120 |
-
const embeddings = await extractor(
|
| 121 |
-
[
|
| 122 |
-
"what is the capital of China?",
|
| 123 |
-
"how to implement quick sort in python?",
|
| 124 |
-
"Beijing",
|
| 125 |
-
"sorting algorithms",
|
| 126 |
-
],
|
| 127 |
-
{ pooling: "cls", normalize: true },
|
| 128 |
-
);
|
| 129 |
-
|
| 130 |
-
// Compute similarity scores
|
| 131 |
-
const similarities = (await matmul(embeddings.slice([0, 1]), embeddings.slice([1, null]).transpose(1, 0))).mul(100);
|
| 132 |
-
console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
|
| 133 |
-
```
|
| 134 |
-
|
| 135 |
-
Additionally, you can also deploy `Alibaba-NLP/gte-modernbert-base` with [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) as follows:
|
| 136 |
-
|
| 137 |
-
- CPU
|
| 138 |
-
|
| 139 |
-
```bash
|
| 140 |
-
docker run --platform linux/amd64 \
|
| 141 |
-
-p 8080:80 \
|
| 142 |
-
-v $PWD/data:/data \
|
| 143 |
-
--pull always \
|
| 144 |
-
ghcr.io/huggingface/text-embeddings-inference:cpu-1.7 \
|
| 145 |
-
--model-id Alibaba-NLP/gte-modernbert-base
|
| 146 |
-
```
|
| 147 |
-
|
| 148 |
-
- GPU
|
| 149 |
-
|
| 150 |
-
```bash
|
| 151 |
-
docker run --gpus all \
|
| 152 |
-
-p 8080:80 \
|
| 153 |
-
-v $PWD/data:/data \
|
| 154 |
-
--pull always \
|
| 155 |
-
ghcr.io/huggingface/text-embeddings-inference:1.7 \
|
| 156 |
-
--model-id Alibaba-NLP/gte-modernbert-base
|
| 157 |
-
```
|
| 158 |
-
|
| 159 |
-
Then you can send requests to the deployed API via the OpenAI-compatible `v1/embeddings` route (more information about the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings)):
|
| 160 |
-
|
| 161 |
-
```bash
|
| 162 |
-
curl https://0.0.0.0:8080/v1/embeddings \
|
| 163 |
-
-H "Content-Type: application/json" \
|
| 164 |
-
-d '{
|
| 165 |
-
"input": [
|
| 166 |
-
"what is the capital of China?",
|
| 167 |
-
"how to implement quick sort in python?",
|
| 168 |
-
"Beijing",
|
| 169 |
-
"sorting algorithms"
|
| 170 |
-
],
|
| 171 |
-
"model": "Alibaba-NLP/gte-modernbert-base",
|
| 172 |
-
"encoding_format": "float"
|
| 173 |
-
}'
|
| 174 |
-
```
|
| 175 |
-
|
| 176 |
-
## Training Details
|
| 177 |
-
|
| 178 |
-
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
|
| 179 |
-
|
| 180 |
-
## Evaluation
|
| 181 |
-
|
| 182 |
-
### MTEB
|
| 183 |
-
|
| 184 |
-
The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Given that all models in the `gte-modernbert` series have a size of less than 1B parameters, we focused exclusively on the results of models under 1B from the MTEB leaderboard.
|
| 185 |
-
|
| 186 |
-
| Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
|
| 187 |
-
|:------------------------------------------------------------------------------------------------:|:--------------:|:---------:|:---------------:|:------------:|:-----------:|:---:|:---:|:---:|:---:|:-----------:|:--------:|
|
| 188 |
-
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
|
| 189 |
-
| [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
|
| 190 |
-
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
|
| 191 |
-
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | 64.11 | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
|
| 192 |
-
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
|
| 193 |
-
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | 65.39 | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
|
| 194 |
-
| [modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) | 149 | 768 | 8192 | 62.62 | 74.31 | 44.98 | 83.96 | 56.42 | 52.89 | 81.78 | 31.39 |
|
| 195 |
-
| [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
|
| 196 |
-
| [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
|
| 197 |
-
| [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
|
| 198 |
-
| [**gte-modernbert-base**](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 149 | 768 | 8192 | **64.38** | **76.99** | **46.47** | **85.93** | **59.24** | **55.33** | **81.57** | **30.68** |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
### LoCo (Long Document Retrieval)(NDCG@10)
|
| 202 |
-
|
| 203 |
-
| Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
|
| 204 |
-
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
| 205 |
-
| [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
|
| 206 |
-
| [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
|
| 207 |
-
| [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
|
| 208 |
-
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 88.88 | 54.45 | 93.00 | 99.82 | 98.03 | 98.70 |
|
| 209 |
-
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 90.68 | 70.86 | 94.06 | 99.73 | 99.11 | 89.67 |
|
| 210 |
-
|
| 211 |
-
### COIR (Code Retrieval Task)(NDCG@10)
|
| 212 |
-
|
| 213 |
-
| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|
| 214 |
-
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 215 |
-
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
|
| 216 |
-
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
|
| 217 |
-
|
| 218 |
-
### BEIR(NDCG@10)
|
| 219 |
-
|
| 220 |
-
| Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
|
| 221 |
-
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 222 |
-
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
|
| 223 |
-
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
## Hiring
|
| 228 |
-
|
| 229 |
-
We have open positions for **Research Interns** and **Full-Time Researchers** to join our team at Tongyi Lab.
|
| 230 |
-
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems.
|
| 231 |
-
Our team is located in the vibrant cities of **Beijing** and **Hangzhou**.
|
| 232 |
-
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:dingkun.ldk@alibaba-inc.com">dingkun.ldk@alibaba-inc.com</a>.
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
## Citation
|
| 236 |
-
|
| 237 |
-
If you find our paper or models helpful, feel free to give us a cite.
|
| 238 |
-
|
| 239 |
-
```
|
| 240 |
-
@inproceedings{zhang2024mgte,
|
| 241 |
-
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
| 242 |
-
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
|
| 243 |
-
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
|
| 244 |
-
pages={1393--1412},
|
| 245 |
-
year={2024}
|
| 246 |
-
}
|
| 247 |
-
|
| 248 |
-
@article{li2023towards,
|
| 249 |
-
title={Towards general text embeddings with multi-stage contrastive learning},
|
| 250 |
-
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
| 251 |
-
journal={arXiv preprint arXiv:2308.03281},
|
| 252 |
-
year={2023}
|
| 253 |
-
}
|
| 254 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/config.json
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"architectures": [
|
| 3 |
-
"ModernBertModel"
|
| 4 |
-
],
|
| 5 |
-
"attention_bias": false,
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"bos_token_id": 50281,
|
| 8 |
-
"classifier_activation": "gelu",
|
| 9 |
-
"classifier_bias": false,
|
| 10 |
-
"classifier_dropout": 0.0,
|
| 11 |
-
"classifier_pooling": "mean",
|
| 12 |
-
"cls_token_id": 50281,
|
| 13 |
-
"decoder_bias": true,
|
| 14 |
-
"deterministic_flash_attn": false,
|
| 15 |
-
"dtype": "float32",
|
| 16 |
-
"embedding_dropout": 0.0,
|
| 17 |
-
"eos_token_id": 50282,
|
| 18 |
-
"global_attn_every_n_layers": 3,
|
| 19 |
-
"global_rope_theta": 160000.0,
|
| 20 |
-
"gradient_checkpointing": false,
|
| 21 |
-
"hidden_activation": "gelu",
|
| 22 |
-
"hidden_size": 768,
|
| 23 |
-
"initializer_cutoff_factor": 2.0,
|
| 24 |
-
"initializer_range": 0.02,
|
| 25 |
-
"intermediate_size": 1152,
|
| 26 |
-
"layer_norm_eps": 1e-05,
|
| 27 |
-
"local_attention": 128,
|
| 28 |
-
"local_rope_theta": 10000.0,
|
| 29 |
-
"max_position_embeddings": 8192,
|
| 30 |
-
"mlp_bias": false,
|
| 31 |
-
"mlp_dropout": 0.0,
|
| 32 |
-
"model_type": "modernbert",
|
| 33 |
-
"norm_bias": false,
|
| 34 |
-
"norm_eps": 1e-05,
|
| 35 |
-
"num_attention_heads": 12,
|
| 36 |
-
"num_hidden_layers": 22,
|
| 37 |
-
"pad_token_id": 50283,
|
| 38 |
-
"position_embedding_type": "absolute",
|
| 39 |
-
"repad_logits_with_grad": false,
|
| 40 |
-
"sep_token_id": 50282,
|
| 41 |
-
"sparse_pred_ignore_index": -100,
|
| 42 |
-
"sparse_prediction": false,
|
| 43 |
-
"transformers_version": "4.56.2",
|
| 44 |
-
"vocab_size": 50368
|
| 45 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/config_sentence_transformers.json
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"__version__": {
|
| 3 |
-
"sentence_transformers": "5.1.1",
|
| 4 |
-
"transformers": "4.56.2",
|
| 5 |
-
"pytorch": "2.8.0"
|
| 6 |
-
},
|
| 7 |
-
"prompts": {
|
| 8 |
-
"query": "",
|
| 9 |
-
"document": ""
|
| 10 |
-
},
|
| 11 |
-
"default_prompt_name": null,
|
| 12 |
-
"similarity_fn_name": "cosine",
|
| 13 |
-
"model_type": "SentenceTransformer"
|
| 14 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0f9247027e7d57e8b36440b5b3d10a785ded92c7c9f4a313ff7f54a549967290
|
| 3 |
-
size 596070136
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/modules.json
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"idx": 0,
|
| 4 |
-
"name": "0",
|
| 5 |
-
"path": "",
|
| 6 |
-
"type": "sentence_transformers.models.Transformer"
|
| 7 |
-
},
|
| 8 |
-
{
|
| 9 |
-
"idx": 1,
|
| 10 |
-
"name": "1",
|
| 11 |
-
"path": "1_Pooling",
|
| 12 |
-
"type": "sentence_transformers.models.Pooling"
|
| 13 |
-
}
|
| 14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/sentence_bert_config.json
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"max_seq_length": 8192,
|
| 3 |
-
"do_lower_case": false
|
| 4 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/special_tokens_map.json
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cls_token": {
|
| 3 |
-
"content": "[CLS]",
|
| 4 |
-
"lstrip": false,
|
| 5 |
-
"normalized": false,
|
| 6 |
-
"rstrip": false,
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
-
"mask_token": {
|
| 10 |
-
"content": "[MASK]",
|
| 11 |
-
"lstrip": true,
|
| 12 |
-
"normalized": false,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"pad_token": {
|
| 17 |
-
"content": "[PAD]",
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
-
"sep_token": {
|
| 24 |
-
"content": "[SEP]",
|
| 25 |
-
"lstrip": false,
|
| 26 |
-
"normalized": false,
|
| 27 |
-
"rstrip": false,
|
| 28 |
-
"single_word": false
|
| 29 |
-
},
|
| 30 |
-
"unk_token": {
|
| 31 |
-
"content": "[UNK]",
|
| 32 |
-
"lstrip": false,
|
| 33 |
-
"normalized": false,
|
| 34 |
-
"rstrip": false,
|
| 35 |
-
"single_word": false
|
| 36 |
-
}
|
| 37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document_0_SentenceTransformer/tokenizer.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
document_0_SentenceTransformer/tokenizer_config.json
DELETED
|
@@ -1,945 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "|||IP_ADDRESS|||",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": true,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": false
|
| 10 |
-
},
|
| 11 |
-
"1": {
|
| 12 |
-
"content": "<|padding|>",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"50254": {
|
| 20 |
-
"content": " ",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": true,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": false
|
| 26 |
-
},
|
| 27 |
-
"50255": {
|
| 28 |
-
"content": " ",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": true,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": false
|
| 34 |
-
},
|
| 35 |
-
"50256": {
|
| 36 |
-
"content": " ",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": true,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": false
|
| 42 |
-
},
|
| 43 |
-
"50257": {
|
| 44 |
-
"content": " ",
|
| 45 |
-
"lstrip": false,
|
| 46 |
-
"normalized": true,
|
| 47 |
-
"rstrip": false,
|
| 48 |
-
"single_word": false,
|
| 49 |
-
"special": false
|
| 50 |
-
},
|
| 51 |
-
"50258": {
|
| 52 |
-
"content": " ",
|
| 53 |
-
"lstrip": false,
|
| 54 |
-
"normalized": true,
|
| 55 |
-
"rstrip": false,
|
| 56 |
-
"single_word": false,
|
| 57 |
-
"special": false
|
| 58 |
-
},
|
| 59 |
-
"50259": {
|
| 60 |
-
"content": " ",
|
| 61 |
-
"lstrip": false,
|
| 62 |
-
"normalized": true,
|
| 63 |
-
"rstrip": false,
|
| 64 |
-
"single_word": false,
|
| 65 |
-
"special": false
|
| 66 |
-
},
|
| 67 |
-
"50260": {
|
| 68 |
-
"content": " ",
|
| 69 |
-
"lstrip": false,
|
| 70 |
-
"normalized": true,
|
| 71 |
-
"rstrip": false,
|
| 72 |
-
"single_word": false,
|
| 73 |
-
"special": false
|
| 74 |
-
},
|
| 75 |
-
"50261": {
|
| 76 |
-
"content": " ",
|
| 77 |
-
"lstrip": false,
|
| 78 |
-
"normalized": true,
|
| 79 |
-
"rstrip": false,
|
| 80 |
-
"single_word": false,
|
| 81 |
-
"special": false
|
| 82 |
-
},
|
| 83 |
-
"50262": {
|
| 84 |
-
"content": " ",
|
| 85 |
-
"lstrip": false,
|
| 86 |
-
"normalized": true,
|
| 87 |
-
"rstrip": false,
|
| 88 |
-
"single_word": false,
|
| 89 |
-
"special": false
|
| 90 |
-
},
|
| 91 |
-
"50263": {
|
| 92 |
-
"content": " ",
|
| 93 |
-
"lstrip": false,
|
| 94 |
-
"normalized": true,
|
| 95 |
-
"rstrip": false,
|
| 96 |
-
"single_word": false,
|
| 97 |
-
"special": false
|
| 98 |
-
},
|
| 99 |
-
"50264": {
|
| 100 |
-
"content": " ",
|
| 101 |
-
"lstrip": false,
|
| 102 |
-
"normalized": true,
|
| 103 |
-
"rstrip": false,
|
| 104 |
-
"single_word": false,
|
| 105 |
-
"special": false
|
| 106 |
-
},
|
| 107 |
-
"50265": {
|
| 108 |
-
"content": " ",
|
| 109 |
-
"lstrip": false,
|
| 110 |
-
"normalized": true,
|
| 111 |
-
"rstrip": false,
|
| 112 |
-
"single_word": false,
|
| 113 |
-
"special": false
|
| 114 |
-
},
|
| 115 |
-
"50266": {
|
| 116 |
-
"content": " ",
|
| 117 |
-
"lstrip": false,
|
| 118 |
-
"normalized": true,
|
| 119 |
-
"rstrip": false,
|
| 120 |
-
"single_word": false,
|
| 121 |
-
"special": false
|
| 122 |
-
},
|
| 123 |
-
"50267": {
|
| 124 |
-
"content": " ",
|
| 125 |
-
"lstrip": false,
|
| 126 |
-
"normalized": true,
|
| 127 |
-
"rstrip": false,
|
| 128 |
-
"single_word": false,
|
| 129 |
-
"special": false
|
| 130 |
-
},
|
| 131 |
-
"50268": {
|
| 132 |
-
"content": " ",
|
| 133 |
-
"lstrip": false,
|
| 134 |
-
"normalized": true,
|
| 135 |
-
"rstrip": false,
|
| 136 |
-
"single_word": false,
|
| 137 |
-
"special": false
|
| 138 |
-
},
|
| 139 |
-
"50269": {
|
| 140 |
-
"content": " ",
|
| 141 |
-
"lstrip": false,
|
| 142 |
-
"normalized": true,
|
| 143 |
-
"rstrip": false,
|
| 144 |
-
"single_word": false,
|
| 145 |
-
"special": false
|
| 146 |
-
},
|
| 147 |
-
"50270": {
|
| 148 |
-
"content": " ",
|
| 149 |
-
"lstrip": false,
|
| 150 |
-
"normalized": true,
|
| 151 |
-
"rstrip": false,
|
| 152 |
-
"single_word": false,
|
| 153 |
-
"special": false
|
| 154 |
-
},
|
| 155 |
-
"50271": {
|
| 156 |
-
"content": " ",
|
| 157 |
-
"lstrip": false,
|
| 158 |
-
"normalized": true,
|
| 159 |
-
"rstrip": false,
|
| 160 |
-
"single_word": false,
|
| 161 |
-
"special": false
|
| 162 |
-
},
|
| 163 |
-
"50272": {
|
| 164 |
-
"content": " ",
|
| 165 |
-
"lstrip": false,
|
| 166 |
-
"normalized": true,
|
| 167 |
-
"rstrip": false,
|
| 168 |
-
"single_word": false,
|
| 169 |
-
"special": false
|
| 170 |
-
},
|
| 171 |
-
"50273": {
|
| 172 |
-
"content": " ",
|
| 173 |
-
"lstrip": false,
|
| 174 |
-
"normalized": true,
|
| 175 |
-
"rstrip": false,
|
| 176 |
-
"single_word": false,
|
| 177 |
-
"special": false
|
| 178 |
-
},
|
| 179 |
-
"50274": {
|
| 180 |
-
"content": " ",
|
| 181 |
-
"lstrip": false,
|
| 182 |
-
"normalized": true,
|
| 183 |
-
"rstrip": false,
|
| 184 |
-
"single_word": false,
|
| 185 |
-
"special": false
|
| 186 |
-
},
|
| 187 |
-
"50275": {
|
| 188 |
-
"content": " ",
|
| 189 |
-
"lstrip": false,
|
| 190 |
-
"normalized": true,
|
| 191 |
-
"rstrip": false,
|
| 192 |
-
"single_word": false,
|
| 193 |
-
"special": false
|
| 194 |
-
},
|
| 195 |
-
"50276": {
|
| 196 |
-
"content": " ",
|
| 197 |
-
"lstrip": false,
|
| 198 |
-
"normalized": true,
|
| 199 |
-
"rstrip": false,
|
| 200 |
-
"single_word": false,
|
| 201 |
-
"special": false
|
| 202 |
-
},
|
| 203 |
-
"50277": {
|
| 204 |
-
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
-
"lstrip": false,
|
| 206 |
-
"normalized": true,
|
| 207 |
-
"rstrip": false,
|
| 208 |
-
"single_word": false,
|
| 209 |
-
"special": false
|
| 210 |
-
},
|
| 211 |
-
"50278": {
|
| 212 |
-
"content": "|||PHONE_NUMBER|||",
|
| 213 |
-
"lstrip": false,
|
| 214 |
-
"normalized": true,
|
| 215 |
-
"rstrip": false,
|
| 216 |
-
"single_word": false,
|
| 217 |
-
"special": false
|
| 218 |
-
},
|
| 219 |
-
"50279": {
|
| 220 |
-
"content": "<|endoftext|>",
|
| 221 |
-
"lstrip": false,
|
| 222 |
-
"normalized": false,
|
| 223 |
-
"rstrip": false,
|
| 224 |
-
"single_word": false,
|
| 225 |
-
"special": true
|
| 226 |
-
},
|
| 227 |
-
"50280": {
|
| 228 |
-
"content": "[UNK]",
|
| 229 |
-
"lstrip": false,
|
| 230 |
-
"normalized": false,
|
| 231 |
-
"rstrip": false,
|
| 232 |
-
"single_word": false,
|
| 233 |
-
"special": true
|
| 234 |
-
},
|
| 235 |
-
"50281": {
|
| 236 |
-
"content": "[CLS]",
|
| 237 |
-
"lstrip": false,
|
| 238 |
-
"normalized": false,
|
| 239 |
-
"rstrip": false,
|
| 240 |
-
"single_word": false,
|
| 241 |
-
"special": true
|
| 242 |
-
},
|
| 243 |
-
"50282": {
|
| 244 |
-
"content": "[SEP]",
|
| 245 |
-
"lstrip": false,
|
| 246 |
-
"normalized": false,
|
| 247 |
-
"rstrip": false,
|
| 248 |
-
"single_word": false,
|
| 249 |
-
"special": true
|
| 250 |
-
},
|
| 251 |
-
"50283": {
|
| 252 |
-
"content": "[PAD]",
|
| 253 |
-
"lstrip": false,
|
| 254 |
-
"normalized": false,
|
| 255 |
-
"rstrip": false,
|
| 256 |
-
"single_word": false,
|
| 257 |
-
"special": true
|
| 258 |
-
},
|
| 259 |
-
"50284": {
|
| 260 |
-
"content": "[MASK]",
|
| 261 |
-
"lstrip": true,
|
| 262 |
-
"normalized": false,
|
| 263 |
-
"rstrip": false,
|
| 264 |
-
"single_word": false,
|
| 265 |
-
"special": true
|
| 266 |
-
},
|
| 267 |
-
"50285": {
|
| 268 |
-
"content": "[unused0]",
|
| 269 |
-
"lstrip": false,
|
| 270 |
-
"normalized": true,
|
| 271 |
-
"rstrip": false,
|
| 272 |
-
"single_word": false,
|
| 273 |
-
"special": false
|
| 274 |
-
},
|
| 275 |
-
"50286": {
|
| 276 |
-
"content": "[unused1]",
|
| 277 |
-
"lstrip": false,
|
| 278 |
-
"normalized": true,
|
| 279 |
-
"rstrip": false,
|
| 280 |
-
"single_word": false,
|
| 281 |
-
"special": false
|
| 282 |
-
},
|
| 283 |
-
"50287": {
|
| 284 |
-
"content": "[unused2]",
|
| 285 |
-
"lstrip": false,
|
| 286 |
-
"normalized": true,
|
| 287 |
-
"rstrip": false,
|
| 288 |
-
"single_word": false,
|
| 289 |
-
"special": false
|
| 290 |
-
},
|
| 291 |
-
"50288": {
|
| 292 |
-
"content": "[unused3]",
|
| 293 |
-
"lstrip": false,
|
| 294 |
-
"normalized": true,
|
| 295 |
-
"rstrip": false,
|
| 296 |
-
"single_word": false,
|
| 297 |
-
"special": false
|
| 298 |
-
},
|
| 299 |
-
"50289": {
|
| 300 |
-
"content": "[unused4]",
|
| 301 |
-
"lstrip": false,
|
| 302 |
-
"normalized": true,
|
| 303 |
-
"rstrip": false,
|
| 304 |
-
"single_word": false,
|
| 305 |
-
"special": false
|
| 306 |
-
},
|
| 307 |
-
"50290": {
|
| 308 |
-
"content": "[unused5]",
|
| 309 |
-
"lstrip": false,
|
| 310 |
-
"normalized": true,
|
| 311 |
-
"rstrip": false,
|
| 312 |
-
"single_word": false,
|
| 313 |
-
"special": false
|
| 314 |
-
},
|
| 315 |
-
"50291": {
|
| 316 |
-
"content": "[unused6]",
|
| 317 |
-
"lstrip": false,
|
| 318 |
-
"normalized": true,
|
| 319 |
-
"rstrip": false,
|
| 320 |
-
"single_word": false,
|
| 321 |
-
"special": false
|
| 322 |
-
},
|
| 323 |
-
"50292": {
|
| 324 |
-
"content": "[unused7]",
|
| 325 |
-
"lstrip": false,
|
| 326 |
-
"normalized": true,
|
| 327 |
-
"rstrip": false,
|
| 328 |
-
"single_word": false,
|
| 329 |
-
"special": false
|
| 330 |
-
},
|
| 331 |
-
"50293": {
|
| 332 |
-
"content": "[unused8]",
|
| 333 |
-
"lstrip": false,
|
| 334 |
-
"normalized": true,
|
| 335 |
-
"rstrip": false,
|
| 336 |
-
"single_word": false,
|
| 337 |
-
"special": false
|
| 338 |
-
},
|
| 339 |
-
"50294": {
|
| 340 |
-
"content": "[unused9]",
|
| 341 |
-
"lstrip": false,
|
| 342 |
-
"normalized": true,
|
| 343 |
-
"rstrip": false,
|
| 344 |
-
"single_word": false,
|
| 345 |
-
"special": false
|
| 346 |
-
},
|
| 347 |
-
"50295": {
|
| 348 |
-
"content": "[unused10]",
|
| 349 |
-
"lstrip": false,
|
| 350 |
-
"normalized": true,
|
| 351 |
-
"rstrip": false,
|
| 352 |
-
"single_word": false,
|
| 353 |
-
"special": false
|
| 354 |
-
},
|
| 355 |
-
"50296": {
|
| 356 |
-
"content": "[unused11]",
|
| 357 |
-
"lstrip": false,
|
| 358 |
-
"normalized": true,
|
| 359 |
-
"rstrip": false,
|
| 360 |
-
"single_word": false,
|
| 361 |
-
"special": false
|
| 362 |
-
},
|
| 363 |
-
"50297": {
|
| 364 |
-
"content": "[unused12]",
|
| 365 |
-
"lstrip": false,
|
| 366 |
-
"normalized": true,
|
| 367 |
-
"rstrip": false,
|
| 368 |
-
"single_word": false,
|
| 369 |
-
"special": false
|
| 370 |
-
},
|
| 371 |
-
"50298": {
|
| 372 |
-
"content": "[unused13]",
|
| 373 |
-
"lstrip": false,
|
| 374 |
-
"normalized": true,
|
| 375 |
-
"rstrip": false,
|
| 376 |
-
"single_word": false,
|
| 377 |
-
"special": false
|
| 378 |
-
},
|
| 379 |
-
"50299": {
|
| 380 |
-
"content": "[unused14]",
|
| 381 |
-
"lstrip": false,
|
| 382 |
-
"normalized": true,
|
| 383 |
-
"rstrip": false,
|
| 384 |
-
"single_word": false,
|
| 385 |
-
"special": false
|
| 386 |
-
},
|
| 387 |
-
"50300": {
|
| 388 |
-
"content": "[unused15]",
|
| 389 |
-
"lstrip": false,
|
| 390 |
-
"normalized": true,
|
| 391 |
-
"rstrip": false,
|
| 392 |
-
"single_word": false,
|
| 393 |
-
"special": false
|
| 394 |
-
},
|
| 395 |
-
"50301": {
|
| 396 |
-
"content": "[unused16]",
|
| 397 |
-
"lstrip": false,
|
| 398 |
-
"normalized": true,
|
| 399 |
-
"rstrip": false,
|
| 400 |
-
"single_word": false,
|
| 401 |
-
"special": false
|
| 402 |
-
},
|
| 403 |
-
"50302": {
|
| 404 |
-
"content": "[unused17]",
|
| 405 |
-
"lstrip": false,
|
| 406 |
-
"normalized": true,
|
| 407 |
-
"rstrip": false,
|
| 408 |
-
"single_word": false,
|
| 409 |
-
"special": false
|
| 410 |
-
},
|
| 411 |
-
"50303": {
|
| 412 |
-
"content": "[unused18]",
|
| 413 |
-
"lstrip": false,
|
| 414 |
-
"normalized": true,
|
| 415 |
-
"rstrip": false,
|
| 416 |
-
"single_word": false,
|
| 417 |
-
"special": false
|
| 418 |
-
},
|
| 419 |
-
"50304": {
|
| 420 |
-
"content": "[unused19]",
|
| 421 |
-
"lstrip": false,
|
| 422 |
-
"normalized": true,
|
| 423 |
-
"rstrip": false,
|
| 424 |
-
"single_word": false,
|
| 425 |
-
"special": false
|
| 426 |
-
},
|
| 427 |
-
"50305": {
|
| 428 |
-
"content": "[unused20]",
|
| 429 |
-
"lstrip": false,
|
| 430 |
-
"normalized": true,
|
| 431 |
-
"rstrip": false,
|
| 432 |
-
"single_word": false,
|
| 433 |
-
"special": false
|
| 434 |
-
},
|
| 435 |
-
"50306": {
|
| 436 |
-
"content": "[unused21]",
|
| 437 |
-
"lstrip": false,
|
| 438 |
-
"normalized": true,
|
| 439 |
-
"rstrip": false,
|
| 440 |
-
"single_word": false,
|
| 441 |
-
"special": false
|
| 442 |
-
},
|
| 443 |
-
"50307": {
|
| 444 |
-
"content": "[unused22]",
|
| 445 |
-
"lstrip": false,
|
| 446 |
-
"normalized": true,
|
| 447 |
-
"rstrip": false,
|
| 448 |
-
"single_word": false,
|
| 449 |
-
"special": false
|
| 450 |
-
},
|
| 451 |
-
"50308": {
|
| 452 |
-
"content": "[unused23]",
|
| 453 |
-
"lstrip": false,
|
| 454 |
-
"normalized": true,
|
| 455 |
-
"rstrip": false,
|
| 456 |
-
"single_word": false,
|
| 457 |
-
"special": false
|
| 458 |
-
},
|
| 459 |
-
"50309": {
|
| 460 |
-
"content": "[unused24]",
|
| 461 |
-
"lstrip": false,
|
| 462 |
-
"normalized": true,
|
| 463 |
-
"rstrip": false,
|
| 464 |
-
"single_word": false,
|
| 465 |
-
"special": false
|
| 466 |
-
},
|
| 467 |
-
"50310": {
|
| 468 |
-
"content": "[unused25]",
|
| 469 |
-
"lstrip": false,
|
| 470 |
-
"normalized": true,
|
| 471 |
-
"rstrip": false,
|
| 472 |
-
"single_word": false,
|
| 473 |
-
"special": false
|
| 474 |
-
},
|
| 475 |
-
"50311": {
|
| 476 |
-
"content": "[unused26]",
|
| 477 |
-
"lstrip": false,
|
| 478 |
-
"normalized": true,
|
| 479 |
-
"rstrip": false,
|
| 480 |
-
"single_word": false,
|
| 481 |
-
"special": false
|
| 482 |
-
},
|
| 483 |
-
"50312": {
|
| 484 |
-
"content": "[unused27]",
|
| 485 |
-
"lstrip": false,
|
| 486 |
-
"normalized": true,
|
| 487 |
-
"rstrip": false,
|
| 488 |
-
"single_word": false,
|
| 489 |
-
"special": false
|
| 490 |
-
},
|
| 491 |
-
"50313": {
|
| 492 |
-
"content": "[unused28]",
|
| 493 |
-
"lstrip": false,
|
| 494 |
-
"normalized": true,
|
| 495 |
-
"rstrip": false,
|
| 496 |
-
"single_word": false,
|
| 497 |
-
"special": false
|
| 498 |
-
},
|
| 499 |
-
"50314": {
|
| 500 |
-
"content": "[unused29]",
|
| 501 |
-
"lstrip": false,
|
| 502 |
-
"normalized": true,
|
| 503 |
-
"rstrip": false,
|
| 504 |
-
"single_word": false,
|
| 505 |
-
"special": false
|
| 506 |
-
},
|
| 507 |
-
"50315": {
|
| 508 |
-
"content": "[unused30]",
|
| 509 |
-
"lstrip": false,
|
| 510 |
-
"normalized": true,
|
| 511 |
-
"rstrip": false,
|
| 512 |
-
"single_word": false,
|
| 513 |
-
"special": false
|
| 514 |
-
},
|
| 515 |
-
"50316": {
|
| 516 |
-
"content": "[unused31]",
|
| 517 |
-
"lstrip": false,
|
| 518 |
-
"normalized": true,
|
| 519 |
-
"rstrip": false,
|
| 520 |
-
"single_word": false,
|
| 521 |
-
"special": false
|
| 522 |
-
},
|
| 523 |
-
"50317": {
|
| 524 |
-
"content": "[unused32]",
|
| 525 |
-
"lstrip": false,
|
| 526 |
-
"normalized": true,
|
| 527 |
-
"rstrip": false,
|
| 528 |
-
"single_word": false,
|
| 529 |
-
"special": false
|
| 530 |
-
},
|
| 531 |
-
"50318": {
|
| 532 |
-
"content": "[unused33]",
|
| 533 |
-
"lstrip": false,
|
| 534 |
-
"normalized": true,
|
| 535 |
-
"rstrip": false,
|
| 536 |
-
"single_word": false,
|
| 537 |
-
"special": false
|
| 538 |
-
},
|
| 539 |
-
"50319": {
|
| 540 |
-
"content": "[unused34]",
|
| 541 |
-
"lstrip": false,
|
| 542 |
-
"normalized": true,
|
| 543 |
-
"rstrip": false,
|
| 544 |
-
"single_word": false,
|
| 545 |
-
"special": false
|
| 546 |
-
},
|
| 547 |
-
"50320": {
|
| 548 |
-
"content": "[unused35]",
|
| 549 |
-
"lstrip": false,
|
| 550 |
-
"normalized": true,
|
| 551 |
-
"rstrip": false,
|
| 552 |
-
"single_word": false,
|
| 553 |
-
"special": false
|
| 554 |
-
},
|
| 555 |
-
"50321": {
|
| 556 |
-
"content": "[unused36]",
|
| 557 |
-
"lstrip": false,
|
| 558 |
-
"normalized": true,
|
| 559 |
-
"rstrip": false,
|
| 560 |
-
"single_word": false,
|
| 561 |
-
"special": false
|
| 562 |
-
},
|
| 563 |
-
"50322": {
|
| 564 |
-
"content": "[unused37]",
|
| 565 |
-
"lstrip": false,
|
| 566 |
-
"normalized": true,
|
| 567 |
-
"rstrip": false,
|
| 568 |
-
"single_word": false,
|
| 569 |
-
"special": false
|
| 570 |
-
},
|
| 571 |
-
"50323": {
|
| 572 |
-
"content": "[unused38]",
|
| 573 |
-
"lstrip": false,
|
| 574 |
-
"normalized": true,
|
| 575 |
-
"rstrip": false,
|
| 576 |
-
"single_word": false,
|
| 577 |
-
"special": false
|
| 578 |
-
},
|
| 579 |
-
"50324": {
|
| 580 |
-
"content": "[unused39]",
|
| 581 |
-
"lstrip": false,
|
| 582 |
-
"normalized": true,
|
| 583 |
-
"rstrip": false,
|
| 584 |
-
"single_word": false,
|
| 585 |
-
"special": false
|
| 586 |
-
},
|
| 587 |
-
"50325": {
|
| 588 |
-
"content": "[unused40]",
|
| 589 |
-
"lstrip": false,
|
| 590 |
-
"normalized": true,
|
| 591 |
-
"rstrip": false,
|
| 592 |
-
"single_word": false,
|
| 593 |
-
"special": false
|
| 594 |
-
},
|
| 595 |
-
"50326": {
|
| 596 |
-
"content": "[unused41]",
|
| 597 |
-
"lstrip": false,
|
| 598 |
-
"normalized": true,
|
| 599 |
-
"rstrip": false,
|
| 600 |
-
"single_word": false,
|
| 601 |
-
"special": false
|
| 602 |
-
},
|
| 603 |
-
"50327": {
|
| 604 |
-
"content": "[unused42]",
|
| 605 |
-
"lstrip": false,
|
| 606 |
-
"normalized": true,
|
| 607 |
-
"rstrip": false,
|
| 608 |
-
"single_word": false,
|
| 609 |
-
"special": false
|
| 610 |
-
},
|
| 611 |
-
"50328": {
|
| 612 |
-
"content": "[unused43]",
|
| 613 |
-
"lstrip": false,
|
| 614 |
-
"normalized": true,
|
| 615 |
-
"rstrip": false,
|
| 616 |
-
"single_word": false,
|
| 617 |
-
"special": false
|
| 618 |
-
},
|
| 619 |
-
"50329": {
|
| 620 |
-
"content": "[unused44]",
|
| 621 |
-
"lstrip": false,
|
| 622 |
-
"normalized": true,
|
| 623 |
-
"rstrip": false,
|
| 624 |
-
"single_word": false,
|
| 625 |
-
"special": false
|
| 626 |
-
},
|
| 627 |
-
"50330": {
|
| 628 |
-
"content": "[unused45]",
|
| 629 |
-
"lstrip": false,
|
| 630 |
-
"normalized": true,
|
| 631 |
-
"rstrip": false,
|
| 632 |
-
"single_word": false,
|
| 633 |
-
"special": false
|
| 634 |
-
},
|
| 635 |
-
"50331": {
|
| 636 |
-
"content": "[unused46]",
|
| 637 |
-
"lstrip": false,
|
| 638 |
-
"normalized": true,
|
| 639 |
-
"rstrip": false,
|
| 640 |
-
"single_word": false,
|
| 641 |
-
"special": false
|
| 642 |
-
},
|
| 643 |
-
"50332": {
|
| 644 |
-
"content": "[unused47]",
|
| 645 |
-
"lstrip": false,
|
| 646 |
-
"normalized": true,
|
| 647 |
-
"rstrip": false,
|
| 648 |
-
"single_word": false,
|
| 649 |
-
"special": false
|
| 650 |
-
},
|
| 651 |
-
"50333": {
|
| 652 |
-
"content": "[unused48]",
|
| 653 |
-
"lstrip": false,
|
| 654 |
-
"normalized": true,
|
| 655 |
-
"rstrip": false,
|
| 656 |
-
"single_word": false,
|
| 657 |
-
"special": false
|
| 658 |
-
},
|
| 659 |
-
"50334": {
|
| 660 |
-
"content": "[unused49]",
|
| 661 |
-
"lstrip": false,
|
| 662 |
-
"normalized": true,
|
| 663 |
-
"rstrip": false,
|
| 664 |
-
"single_word": false,
|
| 665 |
-
"special": false
|
| 666 |
-
},
|
| 667 |
-
"50335": {
|
| 668 |
-
"content": "[unused50]",
|
| 669 |
-
"lstrip": false,
|
| 670 |
-
"normalized": true,
|
| 671 |
-
"rstrip": false,
|
| 672 |
-
"single_word": false,
|
| 673 |
-
"special": false
|
| 674 |
-
},
|
| 675 |
-
"50336": {
|
| 676 |
-
"content": "[unused51]",
|
| 677 |
-
"lstrip": false,
|
| 678 |
-
"normalized": true,
|
| 679 |
-
"rstrip": false,
|
| 680 |
-
"single_word": false,
|
| 681 |
-
"special": false
|
| 682 |
-
},
|
| 683 |
-
"50337": {
|
| 684 |
-
"content": "[unused52]",
|
| 685 |
-
"lstrip": false,
|
| 686 |
-
"normalized": true,
|
| 687 |
-
"rstrip": false,
|
| 688 |
-
"single_word": false,
|
| 689 |
-
"special": false
|
| 690 |
-
},
|
| 691 |
-
"50338": {
|
| 692 |
-
"content": "[unused53]",
|
| 693 |
-
"lstrip": false,
|
| 694 |
-
"normalized": true,
|
| 695 |
-
"rstrip": false,
|
| 696 |
-
"single_word": false,
|
| 697 |
-
"special": false
|
| 698 |
-
},
|
| 699 |
-
"50339": {
|
| 700 |
-
"content": "[unused54]",
|
| 701 |
-
"lstrip": false,
|
| 702 |
-
"normalized": true,
|
| 703 |
-
"rstrip": false,
|
| 704 |
-
"single_word": false,
|
| 705 |
-
"special": false
|
| 706 |
-
},
|
| 707 |
-
"50340": {
|
| 708 |
-
"content": "[unused55]",
|
| 709 |
-
"lstrip": false,
|
| 710 |
-
"normalized": true,
|
| 711 |
-
"rstrip": false,
|
| 712 |
-
"single_word": false,
|
| 713 |
-
"special": false
|
| 714 |
-
},
|
| 715 |
-
"50341": {
|
| 716 |
-
"content": "[unused56]",
|
| 717 |
-
"lstrip": false,
|
| 718 |
-
"normalized": true,
|
| 719 |
-
"rstrip": false,
|
| 720 |
-
"single_word": false,
|
| 721 |
-
"special": false
|
| 722 |
-
},
|
| 723 |
-
"50342": {
|
| 724 |
-
"content": "[unused57]",
|
| 725 |
-
"lstrip": false,
|
| 726 |
-
"normalized": true,
|
| 727 |
-
"rstrip": false,
|
| 728 |
-
"single_word": false,
|
| 729 |
-
"special": false
|
| 730 |
-
},
|
| 731 |
-
"50343": {
|
| 732 |
-
"content": "[unused58]",
|
| 733 |
-
"lstrip": false,
|
| 734 |
-
"normalized": true,
|
| 735 |
-
"rstrip": false,
|
| 736 |
-
"single_word": false,
|
| 737 |
-
"special": false
|
| 738 |
-
},
|
| 739 |
-
"50344": {
|
| 740 |
-
"content": "[unused59]",
|
| 741 |
-
"lstrip": false,
|
| 742 |
-
"normalized": true,
|
| 743 |
-
"rstrip": false,
|
| 744 |
-
"single_word": false,
|
| 745 |
-
"special": false
|
| 746 |
-
},
|
| 747 |
-
"50345": {
|
| 748 |
-
"content": "[unused60]",
|
| 749 |
-
"lstrip": false,
|
| 750 |
-
"normalized": true,
|
| 751 |
-
"rstrip": false,
|
| 752 |
-
"single_word": false,
|
| 753 |
-
"special": false
|
| 754 |
-
},
|
| 755 |
-
"50346": {
|
| 756 |
-
"content": "[unused61]",
|
| 757 |
-
"lstrip": false,
|
| 758 |
-
"normalized": true,
|
| 759 |
-
"rstrip": false,
|
| 760 |
-
"single_word": false,
|
| 761 |
-
"special": false
|
| 762 |
-
},
|
| 763 |
-
"50347": {
|
| 764 |
-
"content": "[unused62]",
|
| 765 |
-
"lstrip": false,
|
| 766 |
-
"normalized": true,
|
| 767 |
-
"rstrip": false,
|
| 768 |
-
"single_word": false,
|
| 769 |
-
"special": false
|
| 770 |
-
},
|
| 771 |
-
"50348": {
|
| 772 |
-
"content": "[unused63]",
|
| 773 |
-
"lstrip": false,
|
| 774 |
-
"normalized": true,
|
| 775 |
-
"rstrip": false,
|
| 776 |
-
"single_word": false,
|
| 777 |
-
"special": false
|
| 778 |
-
},
|
| 779 |
-
"50349": {
|
| 780 |
-
"content": "[unused64]",
|
| 781 |
-
"lstrip": false,
|
| 782 |
-
"normalized": true,
|
| 783 |
-
"rstrip": false,
|
| 784 |
-
"single_word": false,
|
| 785 |
-
"special": false
|
| 786 |
-
},
|
| 787 |
-
"50350": {
|
| 788 |
-
"content": "[unused65]",
|
| 789 |
-
"lstrip": false,
|
| 790 |
-
"normalized": true,
|
| 791 |
-
"rstrip": false,
|
| 792 |
-
"single_word": false,
|
| 793 |
-
"special": false
|
| 794 |
-
},
|
| 795 |
-
"50351": {
|
| 796 |
-
"content": "[unused66]",
|
| 797 |
-
"lstrip": false,
|
| 798 |
-
"normalized": true,
|
| 799 |
-
"rstrip": false,
|
| 800 |
-
"single_word": false,
|
| 801 |
-
"special": false
|
| 802 |
-
},
|
| 803 |
-
"50352": {
|
| 804 |
-
"content": "[unused67]",
|
| 805 |
-
"lstrip": false,
|
| 806 |
-
"normalized": true,
|
| 807 |
-
"rstrip": false,
|
| 808 |
-
"single_word": false,
|
| 809 |
-
"special": false
|
| 810 |
-
},
|
| 811 |
-
"50353": {
|
| 812 |
-
"content": "[unused68]",
|
| 813 |
-
"lstrip": false,
|
| 814 |
-
"normalized": true,
|
| 815 |
-
"rstrip": false,
|
| 816 |
-
"single_word": false,
|
| 817 |
-
"special": false
|
| 818 |
-
},
|
| 819 |
-
"50354": {
|
| 820 |
-
"content": "[unused69]",
|
| 821 |
-
"lstrip": false,
|
| 822 |
-
"normalized": true,
|
| 823 |
-
"rstrip": false,
|
| 824 |
-
"single_word": false,
|
| 825 |
-
"special": false
|
| 826 |
-
},
|
| 827 |
-
"50355": {
|
| 828 |
-
"content": "[unused70]",
|
| 829 |
-
"lstrip": false,
|
| 830 |
-
"normalized": true,
|
| 831 |
-
"rstrip": false,
|
| 832 |
-
"single_word": false,
|
| 833 |
-
"special": false
|
| 834 |
-
},
|
| 835 |
-
"50356": {
|
| 836 |
-
"content": "[unused71]",
|
| 837 |
-
"lstrip": false,
|
| 838 |
-
"normalized": true,
|
| 839 |
-
"rstrip": false,
|
| 840 |
-
"single_word": false,
|
| 841 |
-
"special": false
|
| 842 |
-
},
|
| 843 |
-
"50357": {
|
| 844 |
-
"content": "[unused72]",
|
| 845 |
-
"lstrip": false,
|
| 846 |
-
"normalized": true,
|
| 847 |
-
"rstrip": false,
|
| 848 |
-
"single_word": false,
|
| 849 |
-
"special": false
|
| 850 |
-
},
|
| 851 |
-
"50358": {
|
| 852 |
-
"content": "[unused73]",
|
| 853 |
-
"lstrip": false,
|
| 854 |
-
"normalized": true,
|
| 855 |
-
"rstrip": false,
|
| 856 |
-
"single_word": false,
|
| 857 |
-
"special": false
|
| 858 |
-
},
|
| 859 |
-
"50359": {
|
| 860 |
-
"content": "[unused74]",
|
| 861 |
-
"lstrip": false,
|
| 862 |
-
"normalized": true,
|
| 863 |
-
"rstrip": false,
|
| 864 |
-
"single_word": false,
|
| 865 |
-
"special": false
|
| 866 |
-
},
|
| 867 |
-
"50360": {
|
| 868 |
-
"content": "[unused75]",
|
| 869 |
-
"lstrip": false,
|
| 870 |
-
"normalized": true,
|
| 871 |
-
"rstrip": false,
|
| 872 |
-
"single_word": false,
|
| 873 |
-
"special": false
|
| 874 |
-
},
|
| 875 |
-
"50361": {
|
| 876 |
-
"content": "[unused76]",
|
| 877 |
-
"lstrip": false,
|
| 878 |
-
"normalized": true,
|
| 879 |
-
"rstrip": false,
|
| 880 |
-
"single_word": false,
|
| 881 |
-
"special": false
|
| 882 |
-
},
|
| 883 |
-
"50362": {
|
| 884 |
-
"content": "[unused77]",
|
| 885 |
-
"lstrip": false,
|
| 886 |
-
"normalized": true,
|
| 887 |
-
"rstrip": false,
|
| 888 |
-
"single_word": false,
|
| 889 |
-
"special": false
|
| 890 |
-
},
|
| 891 |
-
"50363": {
|
| 892 |
-
"content": "[unused78]",
|
| 893 |
-
"lstrip": false,
|
| 894 |
-
"normalized": true,
|
| 895 |
-
"rstrip": false,
|
| 896 |
-
"single_word": false,
|
| 897 |
-
"special": false
|
| 898 |
-
},
|
| 899 |
-
"50364": {
|
| 900 |
-
"content": "[unused79]",
|
| 901 |
-
"lstrip": false,
|
| 902 |
-
"normalized": true,
|
| 903 |
-
"rstrip": false,
|
| 904 |
-
"single_word": false,
|
| 905 |
-
"special": false
|
| 906 |
-
},
|
| 907 |
-
"50365": {
|
| 908 |
-
"content": "[unused80]",
|
| 909 |
-
"lstrip": false,
|
| 910 |
-
"normalized": true,
|
| 911 |
-
"rstrip": false,
|
| 912 |
-
"single_word": false,
|
| 913 |
-
"special": false
|
| 914 |
-
},
|
| 915 |
-
"50366": {
|
| 916 |
-
"content": "[unused81]",
|
| 917 |
-
"lstrip": false,
|
| 918 |
-
"normalized": true,
|
| 919 |
-
"rstrip": false,
|
| 920 |
-
"single_word": false,
|
| 921 |
-
"special": false
|
| 922 |
-
},
|
| 923 |
-
"50367": {
|
| 924 |
-
"content": "[unused82]",
|
| 925 |
-
"lstrip": false,
|
| 926 |
-
"normalized": true,
|
| 927 |
-
"rstrip": false,
|
| 928 |
-
"single_word": false,
|
| 929 |
-
"special": false
|
| 930 |
-
}
|
| 931 |
-
},
|
| 932 |
-
"clean_up_tokenization_spaces": true,
|
| 933 |
-
"cls_token": "[CLS]",
|
| 934 |
-
"extra_special_tokens": {},
|
| 935 |
-
"mask_token": "[MASK]",
|
| 936 |
-
"model_input_names": [
|
| 937 |
-
"input_ids",
|
| 938 |
-
"attention_mask"
|
| 939 |
-
],
|
| 940 |
-
"model_max_length": 1000000000000000019884624838656,
|
| 941 |
-
"pad_token": "[PAD]",
|
| 942 |
-
"sep_token": "[SEP]",
|
| 943 |
-
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 944 |
-
"unk_token": "[UNK]"
|
| 945 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_0_SentenceTransformer/README.md
DELETED
|
@@ -1,147 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
tags:
|
| 3 |
-
- sentence-transformers
|
| 4 |
-
- sentence-similarity
|
| 5 |
-
- feature-extraction
|
| 6 |
-
- dense
|
| 7 |
-
- generated_from_trainer
|
| 8 |
-
base_model: Alibaba-NLP/gte-modernbert-base
|
| 9 |
-
pipeline_tag: sentence-similarity
|
| 10 |
-
library_name: sentence-transformers
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
| 14 |
-
|
| 15 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 16 |
-
|
| 17 |
-
## Model Details
|
| 18 |
-
|
| 19 |
-
### Model Description
|
| 20 |
-
- **Model Type:** Sentence Transformer
|
| 21 |
-
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base)
|
| 22 |
-
- **Maximum Sequence Length:** inf tokens
|
| 23 |
-
- **Output Dimensionality:** 768 dimensions
|
| 24 |
-
- **Similarity Function:** Cosine Similarity
|
| 25 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 26 |
-
<!-- - **Language:** Unknown -->
|
| 27 |
-
<!-- - **License:** Unknown -->
|
| 28 |
-
|
| 29 |
-
### Model Sources
|
| 30 |
-
|
| 31 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 32 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 33 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 34 |
-
|
| 35 |
-
### Full Model Architecture
|
| 36 |
-
|
| 37 |
-
```
|
| 38 |
-
SentenceTransformer(
|
| 39 |
-
(0): StaticEmbedding(
|
| 40 |
-
(embedding): EmbeddingBag(100003, 768, mode='mean')
|
| 41 |
-
)
|
| 42 |
-
(1): Normalize()
|
| 43 |
-
)
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
## Usage
|
| 47 |
-
|
| 48 |
-
### Direct Usage (Sentence Transformers)
|
| 49 |
-
|
| 50 |
-
First install the Sentence Transformers library:
|
| 51 |
-
|
| 52 |
-
```bash
|
| 53 |
-
pip install -U sentence-transformers
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
Then you can load this model and run inference.
|
| 57 |
-
```python
|
| 58 |
-
from sentence_transformers import SentenceTransformer
|
| 59 |
-
|
| 60 |
-
# Download from the 🤗 Hub
|
| 61 |
-
model = SentenceTransformer("stephantulkens/NIFE-gte-modernbert-base")
|
| 62 |
-
# Run inference
|
| 63 |
-
sentences = [
|
| 64 |
-
'The weather is lovely today.',
|
| 65 |
-
"It's so sunny outside!",
|
| 66 |
-
'He drove to the stadium.',
|
| 67 |
-
]
|
| 68 |
-
embeddings = model.encode(sentences)
|
| 69 |
-
print(embeddings.shape)
|
| 70 |
-
# [3, 768]
|
| 71 |
-
|
| 72 |
-
# Get the similarity scores for the embeddings
|
| 73 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 74 |
-
print(similarities)
|
| 75 |
-
# tensor([[1.0000, 0.4225, 0.2490],
|
| 76 |
-
# [0.4225, 1.0000, 0.3060],
|
| 77 |
-
# [0.2490, 0.3060, 1.0000]])
|
| 78 |
-
```
|
| 79 |
-
|
| 80 |
-
<!--
|
| 81 |
-
### Direct Usage (Transformers)
|
| 82 |
-
|
| 83 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 84 |
-
|
| 85 |
-
</details>
|
| 86 |
-
-->
|
| 87 |
-
|
| 88 |
-
<!--
|
| 89 |
-
### Downstream Usage (Sentence Transformers)
|
| 90 |
-
|
| 91 |
-
You can finetune this model on your own dataset.
|
| 92 |
-
|
| 93 |
-
<details><summary>Click to expand</summary>
|
| 94 |
-
|
| 95 |
-
</details>
|
| 96 |
-
-->
|
| 97 |
-
|
| 98 |
-
<!--
|
| 99 |
-
### Out-of-Scope Use
|
| 100 |
-
|
| 101 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 102 |
-
-->
|
| 103 |
-
|
| 104 |
-
<!--
|
| 105 |
-
## Bias, Risks and Limitations
|
| 106 |
-
|
| 107 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 108 |
-
-->
|
| 109 |
-
|
| 110 |
-
<!--
|
| 111 |
-
### Recommendations
|
| 112 |
-
|
| 113 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 114 |
-
-->
|
| 115 |
-
|
| 116 |
-
## Training Details
|
| 117 |
-
|
| 118 |
-
### Framework Versions
|
| 119 |
-
- Python: 3.12.8
|
| 120 |
-
- Sentence Transformers: 5.1.1
|
| 121 |
-
- Transformers: 4.56.2
|
| 122 |
-
- PyTorch: 2.8.0
|
| 123 |
-
- Accelerate: 1.10.1
|
| 124 |
-
- Datasets: 4.1.1
|
| 125 |
-
- Tokenizers: 0.22.1
|
| 126 |
-
|
| 127 |
-
## Citation
|
| 128 |
-
|
| 129 |
-
### BibTeX
|
| 130 |
-
|
| 131 |
-
<!--
|
| 132 |
-
## Glossary
|
| 133 |
-
|
| 134 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 135 |
-
-->
|
| 136 |
-
|
| 137 |
-
<!--
|
| 138 |
-
## Model Card Authors
|
| 139 |
-
|
| 140 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 141 |
-
-->
|
| 142 |
-
|
| 143 |
-
<!--
|
| 144 |
-
## Model Card Contact
|
| 145 |
-
|
| 146 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 147 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_0_SentenceTransformer/config_sentence_transformers.json
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"model_type": "SentenceTransformer",
|
| 3 |
-
"__version__": {
|
| 4 |
-
"sentence_transformers": "5.1.1",
|
| 5 |
-
"transformers": "4.56.2",
|
| 6 |
-
"pytorch": "2.8.0"
|
| 7 |
-
},
|
| 8 |
-
"prompts": {
|
| 9 |
-
"query": "",
|
| 10 |
-
"document": ""
|
| 11 |
-
},
|
| 12 |
-
"default_prompt_name": null,
|
| 13 |
-
"similarity_fn_name": "cosine"
|
| 14 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_0_SentenceTransformer/model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:bd3aabaef0433c9b51e538dfdbbc8da720dbe79c96650beae4ce0f68001ac81f
|
| 3 |
-
size 307209312
|
|
|
|
|
|
|
|
|
|
|
|
query_0_SentenceTransformer/modules.json
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"idx": 0,
|
| 4 |
-
"name": "0",
|
| 5 |
-
"path": "",
|
| 6 |
-
"type": "sentence_transformers.models.StaticEmbedding"
|
| 7 |
-
},
|
| 8 |
-
{
|
| 9 |
-
"idx": 1,
|
| 10 |
-
"name": "1",
|
| 11 |
-
"path": "1_Normalize",
|
| 12 |
-
"type": "sentence_transformers.models.Normalize"
|
| 13 |
-
}
|
| 14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_0_SentenceTransformer/tokenizer.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
router_config.json
DELETED
|
@@ -1,18 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"types": {
|
| 3 |
-
"query_0_SentenceTransformer": "sentence_transformers.SentenceTransformer.SentenceTransformer",
|
| 4 |
-
"document_0_SentenceTransformer": "sentence_transformers.SentenceTransformer.SentenceTransformer"
|
| 5 |
-
},
|
| 6 |
-
"structure": {
|
| 7 |
-
"query": [
|
| 8 |
-
"query_0_SentenceTransformer"
|
| 9 |
-
],
|
| 10 |
-
"document": [
|
| 11 |
-
"document_0_SentenceTransformer"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
-
"parameters": {
|
| 15 |
-
"default_route": "document",
|
| 16 |
-
"allow_empty_key": true
|
| 17 |
-
}
|
| 18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|