stephenhib
commited on
Commit
•
237b854
1
Parent(s):
9b00a08
Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +392 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:768201
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: The present disclosure provides systems and methods to optimize
|
14 |
+
data backup in a distributed enterprise system by firstly generating a set of
|
15 |
+
unique files from all the files available in the enterprise. A backup set comprising
|
16 |
+
files to be backed up are then generated from the set of unique files and backup
|
17 |
+
is scheduled in the order in which the files to be backed up are identified. Unique
|
18 |
+
files are generated based on file sharing patterns and communications among users
|
19 |
+
that enable generating a social network graph from which one or more communities
|
20 |
+
can be detected and deduplication can be performed on the files hosted by client
|
21 |
+
systems in these communities thereby conserving resources.
|
22 |
+
sentences:
|
23 |
+
- BURNER
|
24 |
+
- SYSTEMS AND METHODS FOR OPTIMIZED DATA BACKUP IN A DISTRIBUTED ENTERPRISE SYSTEM
|
25 |
+
- Power conversion apparatus
|
26 |
+
- source_sentence: The present invention relates to a use of polypeptide compounds
|
27 |
+
having dual agonist effect on glucagon-like peptide-1 receptor (GLP-1R) and glucagon
|
28 |
+
receptor (GCGR). The polypeptide compounds are characterized by high enzymolysis
|
29 |
+
stability, high potency and no adverse reaction, and capable of substantially
|
30 |
+
improving hepatic fibrosis caused by hepatitis B virus (HBV) and hepatitis C virus
|
31 |
+
(HCV) and severity of fibrotic conditions accompanied with liver diseases. The
|
32 |
+
dual target agonist polypeptide derivatives are capable of preventing or treating
|
33 |
+
hepatic fibrosis diseases associated with viral hepatitis.
|
34 |
+
sentences:
|
35 |
+
- GLP-1R/GCGR DUAL-TARGET AGONIST PEPTIDE DERIVATIVES FOR TREATMENT OF VIRAL HEPATITIS-RELATED
|
36 |
+
HEPATIC FIBROSIS
|
37 |
+
- MAGNETIC FILTER CARTRIDGE AND FILTER ASSEMBLY
|
38 |
+
- USER TERMINAL AND WIRELESS COMMUNICATION METHOD
|
39 |
+
- source_sentence: A latch includes a latch housing including a first housing portion
|
40 |
+
and a second housing portion separable from the first housing portion. The second
|
41 |
+
housing portion includes a keeper. A first arm member is in rotational communication
|
42 |
+
with the first housing portion. The first arm member is configured to rotate about
|
43 |
+
a first axis between a first position and a second position. A second arm member
|
44 |
+
is in rotational communication with the first arm member. A latch load pin is
|
45 |
+
in rotational communication with the first arm member about a second axis. The
|
46 |
+
latch load pin is configured to mate with the keeper with the first arm member
|
47 |
+
in the first position. The second arm member in the first position is configured
|
48 |
+
to be fixed relative to the first arm member as the first arm member rotates from
|
49 |
+
the first position toward the second position.
|
50 |
+
sentences:
|
51 |
+
- UNLOCKING METHODS AND RELATED PRODUCTS
|
52 |
+
- LATCH AND METHOD FOR OPERATING SAID LATCH
|
53 |
+
- PANEL-SHAPED MOLDED ARTICLE AND PRODUCTION METHOD FOR PANEL-SHAPED MOLDED ARTICLE
|
54 |
+
- source_sentence: The present invention aims to provide a production method of low-fat
|
55 |
+
and low-protein yogurt with smooth taste, suppressed syneresis and superior shape
|
56 |
+
retainability, comprising adding protein glutaminase and starch to raw milk.
|
57 |
+
sentences:
|
58 |
+
- YOGURT PRODUCTION METHOD
|
59 |
+
- Aircraft electric motor system
|
60 |
+
- Floor panel, flooring system and method for laying flooring system
|
61 |
+
- source_sentence: A computer-implemented method determines an orientation parameter
|
62 |
+
value of a prosthetic component. The method includes receiving a first desired
|
63 |
+
separation distance (d1) between a tibial prosthetic component (120) and a femoral
|
64 |
+
prosthetic component (110) at a first flexion position (521) of a knee joint (100)
|
65 |
+
and estimating a first estimated separation distance (g1) between the tibial prosthetic
|
66 |
+
component and the femoral prosthetic component at the first flexion position of
|
67 |
+
the knee joint for at least one potential orientation of the femoral prosthet¬ic
|
68 |
+
component. The method also includes determining a first orientation para¬meter
|
69 |
+
value of the femoral prosthetic component by comparing the first estimated separation
|
70 |
+
distance to the first desired separation distance and out¬putting the first orientation
|
71 |
+
parameter value via a user interface (400).
|
72 |
+
sentences:
|
73 |
+
- Mobile device and antenna structure
|
74 |
+
- TWO-WAY VALVE FOR CONTROLLING A TEMPERATURE OF A COOLANT FOR AN INTERNAL COMBUSTION
|
75 |
+
ENGINE
|
76 |
+
- SYSTEMS AND METHOD FOR PROSTHETIC COMPONENT ORIENTATION
|
77 |
+
---
|
78 |
+
|
79 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
80 |
+
|
81 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
82 |
+
|
83 |
+
## Model Details
|
84 |
+
|
85 |
+
### Model Description
|
86 |
+
- **Model Type:** Sentence Transformer
|
87 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
|
88 |
+
- **Maximum Sequence Length:** 384 tokens
|
89 |
+
- **Output Dimensionality:** 768 tokens
|
90 |
+
- **Similarity Function:** Cosine Similarity
|
91 |
+
- **Training Dataset:**
|
92 |
+
- json
|
93 |
+
<!-- - **Language:** Unknown -->
|
94 |
+
<!-- - **License:** Unknown -->
|
95 |
+
|
96 |
+
### Model Sources
|
97 |
+
|
98 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
99 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
100 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
101 |
+
|
102 |
+
### Full Model Architecture
|
103 |
+
|
104 |
+
```
|
105 |
+
SentenceTransformer(
|
106 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
107 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
108 |
+
(2): Normalize()
|
109 |
+
)
|
110 |
+
```
|
111 |
+
|
112 |
+
## Usage
|
113 |
+
|
114 |
+
### Direct Usage (Sentence Transformers)
|
115 |
+
|
116 |
+
First install the Sentence Transformers library:
|
117 |
+
|
118 |
+
```bash
|
119 |
+
pip install -U sentence-transformers
|
120 |
+
```
|
121 |
+
|
122 |
+
Then you can load this model and run inference.
|
123 |
+
```python
|
124 |
+
from sentence_transformers import SentenceTransformer
|
125 |
+
|
126 |
+
# Download from the 🤗 Hub
|
127 |
+
model = SentenceTransformer("stephenhib/all-mpnet-base-v2-patabs-1epoc-batch32-100")
|
128 |
+
# Run inference
|
129 |
+
sentences = [
|
130 |
+
'A computer-implemented method determines an orientation parameter value of a prosthetic component. The method includes receiving a first desired separation distance (d1) between a tibial prosthetic component (120) and a femoral prosthetic component (110) at a first flexion position (521) of a knee joint (100) and estimating a first estimated separation distance (g1) between the tibial prosthetic component and the femoral prosthetic component at the first flexion position of the knee joint for at least one potential orientation of the femoral prosthet¬ic component. The method also includes determining a first orientation para¬meter value of the femoral prosthetic component by comparing the first estimated separation distance to the first desired separation distance and out¬putting the first orientation parameter value via a user interface (400).',
|
131 |
+
'SYSTEMS AND METHOD FOR PROSTHETIC COMPONENT ORIENTATION',
|
132 |
+
'TWO-WAY VALVE FOR CONTROLLING A TEMPERATURE OF A COOLANT FOR AN INTERNAL COMBUSTION ENGINE',
|
133 |
+
]
|
134 |
+
embeddings = model.encode(sentences)
|
135 |
+
print(embeddings.shape)
|
136 |
+
# [3, 768]
|
137 |
+
|
138 |
+
# Get the similarity scores for the embeddings
|
139 |
+
similarities = model.similarity(embeddings, embeddings)
|
140 |
+
print(similarities.shape)
|
141 |
+
# [3, 3]
|
142 |
+
```
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Direct Usage (Transformers)
|
146 |
+
|
147 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
148 |
+
|
149 |
+
</details>
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Downstream Usage (Sentence Transformers)
|
154 |
+
|
155 |
+
You can finetune this model on your own dataset.
|
156 |
+
|
157 |
+
<details><summary>Click to expand</summary>
|
158 |
+
|
159 |
+
</details>
|
160 |
+
-->
|
161 |
+
|
162 |
+
<!--
|
163 |
+
### Out-of-Scope Use
|
164 |
+
|
165 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
166 |
+
-->
|
167 |
+
|
168 |
+
<!--
|
169 |
+
## Bias, Risks and Limitations
|
170 |
+
|
171 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
172 |
+
-->
|
173 |
+
|
174 |
+
<!--
|
175 |
+
### Recommendations
|
176 |
+
|
177 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
178 |
+
-->
|
179 |
+
|
180 |
+
## Training Details
|
181 |
+
|
182 |
+
### Training Dataset
|
183 |
+
|
184 |
+
#### json
|
185 |
+
|
186 |
+
* Dataset: json
|
187 |
+
* Size: 768,201 training samples
|
188 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
189 |
+
* Approximate statistics based on the first 1000 samples:
|
190 |
+
| | positive | anchor |
|
191 |
+
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
192 |
+
| type | string | string |
|
193 |
+
| details | <ul><li>min: 13 tokens</li><li>mean: 163.82 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.34 tokens</li><li>max: 73 tokens</li></ul> |
|
194 |
+
* Samples:
|
195 |
+
| positive | anchor |
|
196 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
|
197 |
+
| <code>According to an example aspect of the present invention, there is provided an apparatus and method to control mining vehicles, in particular as electric mining vehicles, taking into account the state of charge the batteries of said mining vehicles.</code> | <code>MINING VEHICLE CONTROL</code> |
|
198 |
+
| <code>The invention is related to a new soft heterophasic random propylene copolymer with improved optical properties, as well as the process by which the heterophasic random propylene copolymer is produced.</code> | <code>SOFT HETEROPHASIC RANDOM PROPYLENE COPOLYMER WITH IMPROVED CLARITY</code> |
|
199 |
+
| <code>The present invention relates to a valve assembly 10 for controlling a volute connecting opening 324 of a multi-channel turbine 500. The valve assembly 10 comprises a housing portion 300, a valve body 100 and an internal lever 200. The housing portion 300 defines a first volute channel 312, a second volute channel 314 and a volute connecting region 320. The housing portion 300 further comprises a cavity 340. The cavity 340 is separated from the volutes 312, 314 and can be accessed from outside the housing portion 300 via a housing opening 342 which extends from outside the housing portion 300 into the cavity 340. The volute connection region 320 is located between the first volute channel 312 and the second volute channel 314 and defines a volute connecting opening 324. The valve body 100 is inserted in the cavity 340 of the housing portion 300 and comprises at least one fin 120. The internal lever 200 is coupled with the valve body 100 and configured to pivotably move the valve body 100 between a first position and a second position. In the first position of the valve body 100, the fin 120 blocks the volute connecting opening 324. Thus, exhaust gases are substantially prevented from overflowing from the first volute channel 312 to the second volute channel 314 and vice versa. In the second position of the valve body 100 the fin 120 clears the volute connecting opening 324. Thus, exhaust gases are enabled to overflow from the first volute channel 312 to the second volute channel 314 and vice versa.</code> | <code>VALVE ASSEMBLY FOR MULTI-CHANNEL TURBINE</code> |
|
200 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
201 |
+
```json
|
202 |
+
{
|
203 |
+
"scale": 20.0,
|
204 |
+
"similarity_fct": "cos_sim"
|
205 |
+
}
|
206 |
+
```
|
207 |
+
|
208 |
+
### Training Hyperparameters
|
209 |
+
#### Non-Default Hyperparameters
|
210 |
+
|
211 |
+
- `eval_strategy`: steps
|
212 |
+
- `per_device_train_batch_size`: 4
|
213 |
+
- `per_device_eval_batch_size`: 2
|
214 |
+
- `learning_rate`: 2e-05
|
215 |
+
- `num_train_epochs`: 1
|
216 |
+
- `warmup_ratio`: 0.1
|
217 |
+
- `bf16`: True
|
218 |
+
- `batch_sampler`: no_duplicates
|
219 |
+
|
220 |
+
#### All Hyperparameters
|
221 |
+
<details><summary>Click to expand</summary>
|
222 |
+
|
223 |
+
- `overwrite_output_dir`: False
|
224 |
+
- `do_predict`: False
|
225 |
+
- `eval_strategy`: steps
|
226 |
+
- `prediction_loss_only`: True
|
227 |
+
- `per_device_train_batch_size`: 4
|
228 |
+
- `per_device_eval_batch_size`: 2
|
229 |
+
- `per_gpu_train_batch_size`: None
|
230 |
+
- `per_gpu_eval_batch_size`: None
|
231 |
+
- `gradient_accumulation_steps`: 1
|
232 |
+
- `eval_accumulation_steps`: None
|
233 |
+
- `torch_empty_cache_steps`: None
|
234 |
+
- `learning_rate`: 2e-05
|
235 |
+
- `weight_decay`: 0.0
|
236 |
+
- `adam_beta1`: 0.9
|
237 |
+
- `adam_beta2`: 0.999
|
238 |
+
- `adam_epsilon`: 1e-08
|
239 |
+
- `max_grad_norm`: 1.0
|
240 |
+
- `num_train_epochs`: 1
|
241 |
+
- `max_steps`: -1
|
242 |
+
- `lr_scheduler_type`: linear
|
243 |
+
- `lr_scheduler_kwargs`: {}
|
244 |
+
- `warmup_ratio`: 0.1
|
245 |
+
- `warmup_steps`: 0
|
246 |
+
- `log_level`: passive
|
247 |
+
- `log_level_replica`: warning
|
248 |
+
- `log_on_each_node`: True
|
249 |
+
- `logging_nan_inf_filter`: True
|
250 |
+
- `save_safetensors`: True
|
251 |
+
- `save_on_each_node`: False
|
252 |
+
- `save_only_model`: False
|
253 |
+
- `restore_callback_states_from_checkpoint`: False
|
254 |
+
- `no_cuda`: False
|
255 |
+
- `use_cpu`: False
|
256 |
+
- `use_mps_device`: False
|
257 |
+
- `seed`: 42
|
258 |
+
- `data_seed`: None
|
259 |
+
- `jit_mode_eval`: False
|
260 |
+
- `use_ipex`: False
|
261 |
+
- `bf16`: True
|
262 |
+
- `fp16`: False
|
263 |
+
- `fp16_opt_level`: O1
|
264 |
+
- `half_precision_backend`: auto
|
265 |
+
- `bf16_full_eval`: False
|
266 |
+
- `fp16_full_eval`: False
|
267 |
+
- `tf32`: None
|
268 |
+
- `local_rank`: 0
|
269 |
+
- `ddp_backend`: None
|
270 |
+
- `tpu_num_cores`: None
|
271 |
+
- `tpu_metrics_debug`: False
|
272 |
+
- `debug`: []
|
273 |
+
- `dataloader_drop_last`: False
|
274 |
+
- `dataloader_num_workers`: 0
|
275 |
+
- `dataloader_prefetch_factor`: None
|
276 |
+
- `past_index`: -1
|
277 |
+
- `disable_tqdm`: False
|
278 |
+
- `remove_unused_columns`: True
|
279 |
+
- `label_names`: None
|
280 |
+
- `load_best_model_at_end`: False
|
281 |
+
- `ignore_data_skip`: False
|
282 |
+
- `fsdp`: []
|
283 |
+
- `fsdp_min_num_params`: 0
|
284 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
285 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
286 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
287 |
+
- `deepspeed`: None
|
288 |
+
- `label_smoothing_factor`: 0.0
|
289 |
+
- `optim`: adamw_torch
|
290 |
+
- `optim_args`: None
|
291 |
+
- `adafactor`: False
|
292 |
+
- `group_by_length`: False
|
293 |
+
- `length_column_name`: length
|
294 |
+
- `ddp_find_unused_parameters`: None
|
295 |
+
- `ddp_bucket_cap_mb`: None
|
296 |
+
- `ddp_broadcast_buffers`: False
|
297 |
+
- `dataloader_pin_memory`: True
|
298 |
+
- `dataloader_persistent_workers`: False
|
299 |
+
- `skip_memory_metrics`: True
|
300 |
+
- `use_legacy_prediction_loop`: False
|
301 |
+
- `push_to_hub`: False
|
302 |
+
- `resume_from_checkpoint`: None
|
303 |
+
- `hub_model_id`: None
|
304 |
+
- `hub_strategy`: every_save
|
305 |
+
- `hub_private_repo`: False
|
306 |
+
- `hub_always_push`: False
|
307 |
+
- `gradient_checkpointing`: False
|
308 |
+
- `gradient_checkpointing_kwargs`: None
|
309 |
+
- `include_inputs_for_metrics`: False
|
310 |
+
- `eval_do_concat_batches`: True
|
311 |
+
- `fp16_backend`: auto
|
312 |
+
- `push_to_hub_model_id`: None
|
313 |
+
- `push_to_hub_organization`: None
|
314 |
+
- `mp_parameters`:
|
315 |
+
- `auto_find_batch_size`: False
|
316 |
+
- `full_determinism`: False
|
317 |
+
- `torchdynamo`: None
|
318 |
+
- `ray_scope`: last
|
319 |
+
- `ddp_timeout`: 1800
|
320 |
+
- `torch_compile`: False
|
321 |
+
- `torch_compile_backend`: None
|
322 |
+
- `torch_compile_mode`: None
|
323 |
+
- `dispatch_batches`: None
|
324 |
+
- `split_batches`: None
|
325 |
+
- `include_tokens_per_second`: False
|
326 |
+
- `include_num_input_tokens_seen`: False
|
327 |
+
- `neftune_noise_alpha`: None
|
328 |
+
- `optim_target_modules`: None
|
329 |
+
- `batch_eval_metrics`: False
|
330 |
+
- `eval_on_start`: False
|
331 |
+
- `use_liger_kernel`: False
|
332 |
+
- `eval_use_gather_object`: False
|
333 |
+
- `batch_sampler`: no_duplicates
|
334 |
+
- `multi_dataset_batch_sampler`: proportional
|
335 |
+
|
336 |
+
</details>
|
337 |
+
|
338 |
+
### Framework Versions
|
339 |
+
- Python: 3.11.9
|
340 |
+
- Sentence Transformers: 3.2.0
|
341 |
+
- Transformers: 4.45.2
|
342 |
+
- PyTorch: 2.5.0+cu124
|
343 |
+
- Accelerate: 1.0.1
|
344 |
+
- Datasets: 3.0.1
|
345 |
+
- Tokenizers: 0.20.1
|
346 |
+
|
347 |
+
## Citation
|
348 |
+
|
349 |
+
### BibTeX
|
350 |
+
|
351 |
+
#### Sentence Transformers
|
352 |
+
```bibtex
|
353 |
+
@inproceedings{reimers-2019-sentence-bert,
|
354 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
355 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
356 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
357 |
+
month = "11",
|
358 |
+
year = "2019",
|
359 |
+
publisher = "Association for Computational Linguistics",
|
360 |
+
url = "https://arxiv.org/abs/1908.10084",
|
361 |
+
}
|
362 |
+
```
|
363 |
+
|
364 |
+
#### MultipleNegativesRankingLoss
|
365 |
+
```bibtex
|
366 |
+
@misc{henderson2017efficient,
|
367 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
368 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
369 |
+
year={2017},
|
370 |
+
eprint={1705.00652},
|
371 |
+
archivePrefix={arXiv},
|
372 |
+
primaryClass={cs.CL}
|
373 |
+
}
|
374 |
+
```
|
375 |
+
|
376 |
+
<!--
|
377 |
+
## Glossary
|
378 |
+
|
379 |
+
*Clearly define terms in order to be accessible across audiences.*
|
380 |
+
-->
|
381 |
+
|
382 |
+
<!--
|
383 |
+
## Model Card Authors
|
384 |
+
|
385 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
386 |
+
-->
|
387 |
+
|
388 |
+
<!--
|
389 |
+
## Model Card Contact
|
390 |
+
|
391 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
392 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.0",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.5.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61b0d145478f9a0fed20b457a2a9a63fdeaf620768a72a6580f89b929984bfd7
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": false,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|