stephenhib commited on
Commit
237b854
1 Parent(s): 9b00a08

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:768201
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: The present disclosure provides systems and methods to optimize
14
+ data backup in a distributed enterprise system by firstly generating a set of
15
+ unique files from all the files available in the enterprise. A backup set comprising
16
+ files to be backed up are then generated from the set of unique files and backup
17
+ is scheduled in the order in which the files to be backed up are identified. Unique
18
+ files are generated based on file sharing patterns and communications among users
19
+ that enable generating a social network graph from which one or more communities
20
+ can be detected and deduplication can be performed on the files hosted by client
21
+ systems in these communities thereby conserving resources.
22
+ sentences:
23
+ - BURNER
24
+ - SYSTEMS AND METHODS FOR OPTIMIZED DATA BACKUP IN A DISTRIBUTED ENTERPRISE SYSTEM
25
+ - Power conversion apparatus
26
+ - source_sentence: The present invention relates to a use of polypeptide compounds
27
+ having dual agonist effect on glucagon-like peptide-1 receptor (GLP-1R) and glucagon
28
+ receptor (GCGR). The polypeptide compounds are characterized by high enzymolysis
29
+ stability, high potency and no adverse reaction, and capable of substantially
30
+ improving hepatic fibrosis caused by hepatitis B virus (HBV) and hepatitis C virus
31
+ (HCV) and severity of fibrotic conditions accompanied with liver diseases. The
32
+ dual target agonist polypeptide derivatives are capable of preventing or treating
33
+ hepatic fibrosis diseases associated with viral hepatitis.
34
+ sentences:
35
+ - GLP-1R/GCGR DUAL-TARGET AGONIST PEPTIDE DERIVATIVES FOR TREATMENT OF VIRAL HEPATITIS-RELATED
36
+ HEPATIC FIBROSIS
37
+ - MAGNETIC FILTER CARTRIDGE AND FILTER ASSEMBLY
38
+ - USER TERMINAL AND WIRELESS COMMUNICATION METHOD
39
+ - source_sentence: A latch includes a latch housing including a first housing portion
40
+ and a second housing portion separable from the first housing portion. The second
41
+ housing portion includes a keeper. A first arm member is in rotational communication
42
+ with the first housing portion. The first arm member is configured to rotate about
43
+ a first axis between a first position and a second position. A second arm member
44
+ is in rotational communication with the first arm member. A latch load pin is
45
+ in rotational communication with the first arm member about a second axis. The
46
+ latch load pin is configured to mate with the keeper with the first arm member
47
+ in the first position. The second arm member in the first position is configured
48
+ to be fixed relative to the first arm member as the first arm member rotates from
49
+ the first position toward the second position.
50
+ sentences:
51
+ - UNLOCKING METHODS AND RELATED PRODUCTS
52
+ - LATCH AND METHOD FOR OPERATING SAID LATCH
53
+ - PANEL-SHAPED MOLDED ARTICLE AND PRODUCTION METHOD FOR PANEL-SHAPED MOLDED ARTICLE
54
+ - source_sentence: The present invention aims to provide a production method of low-fat
55
+ and low-protein yogurt with smooth taste, suppressed syneresis and superior shape
56
+ retainability, comprising adding protein glutaminase and starch to raw milk.
57
+ sentences:
58
+ - YOGURT PRODUCTION METHOD
59
+ - Aircraft electric motor system
60
+ - Floor panel, flooring system and method for laying flooring system
61
+ - source_sentence: A computer-implemented method determines an orientation parameter
62
+ value of a prosthetic component. The method includes receiving a first desired
63
+ separation distance (d1) between a tibial prosthetic component (120) and a femoral
64
+ prosthetic component (110) at a first flexion position (521) of a knee joint (100)
65
+ and estimating a first estimated separation distance (g1) between the tibial prosthetic
66
+ component and the femoral prosthetic component at the first flexion position of
67
+ the knee joint for at least one potential orientation of the femoral prosthet¬ic
68
+ component. The method also includes determining a first orientation para¬meter
69
+ value of the femoral prosthetic component by comparing the first estimated separation
70
+ distance to the first desired separation distance and out¬putting the first orientation
71
+ parameter value via a user interface (400).
72
+ sentences:
73
+ - Mobile device and antenna structure
74
+ - TWO-WAY VALVE FOR CONTROLLING A TEMPERATURE OF A COOLANT FOR AN INTERNAL COMBUSTION
75
+ ENGINE
76
+ - SYSTEMS AND METHOD FOR PROSTHETIC COMPONENT ORIENTATION
77
+ ---
78
+
79
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
88
+ - **Maximum Sequence Length:** 384 tokens
89
+ - **Output Dimensionality:** 768 tokens
90
+ - **Similarity Function:** Cosine Similarity
91
+ - **Training Dataset:**
92
+ - json
93
+ <!-- - **Language:** Unknown -->
94
+ <!-- - **License:** Unknown -->
95
+
96
+ ### Model Sources
97
+
98
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
99
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
100
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
101
+
102
+ ### Full Model Architecture
103
+
104
+ ```
105
+ SentenceTransformer(
106
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
107
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
108
+ (2): Normalize()
109
+ )
110
+ ```
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import SentenceTransformer
125
+
126
+ # Download from the 🤗 Hub
127
+ model = SentenceTransformer("stephenhib/all-mpnet-base-v2-patabs-1epoc-batch32-100")
128
+ # Run inference
129
+ sentences = [
130
+ 'A computer-implemented method determines an orientation parameter value of a prosthetic component. The method includes receiving a first desired separation distance (d1) between a tibial prosthetic component (120) and a femoral prosthetic component (110) at a first flexion position (521) of a knee joint (100) and estimating a first estimated separation distance (g1) between the tibial prosthetic component and the femoral prosthetic component at the first flexion position of the knee joint for at least one potential orientation of the femoral prosthet¬ic component. The method also includes determining a first orientation para¬meter value of the femoral prosthetic component by comparing the first estimated separation distance to the first desired separation distance and out¬putting the first orientation parameter value via a user interface (400).',
131
+ 'SYSTEMS AND METHOD FOR PROSTHETIC COMPONENT ORIENTATION',
132
+ 'TWO-WAY VALVE FOR CONTROLLING A TEMPERATURE OF A COOLANT FOR AN INTERNAL COMBUSTION ENGINE',
133
+ ]
134
+ embeddings = model.encode(sentences)
135
+ print(embeddings.shape)
136
+ # [3, 768]
137
+
138
+ # Get the similarity scores for the embeddings
139
+ similarities = model.similarity(embeddings, embeddings)
140
+ print(similarities.shape)
141
+ # [3, 3]
142
+ ```
143
+
144
+ <!--
145
+ ### Direct Usage (Transformers)
146
+
147
+ <details><summary>Click to see the direct usage in Transformers</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Downstream Usage (Sentence Transformers)
154
+
155
+ You can finetune this model on your own dataset.
156
+
157
+ <details><summary>Click to expand</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Out-of-Scope Use
164
+
165
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
166
+ -->
167
+
168
+ <!--
169
+ ## Bias, Risks and Limitations
170
+
171
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
172
+ -->
173
+
174
+ <!--
175
+ ### Recommendations
176
+
177
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
178
+ -->
179
+
180
+ ## Training Details
181
+
182
+ ### Training Dataset
183
+
184
+ #### json
185
+
186
+ * Dataset: json
187
+ * Size: 768,201 training samples
188
+ * Columns: <code>positive</code> and <code>anchor</code>
189
+ * Approximate statistics based on the first 1000 samples:
190
+ | | positive | anchor |
191
+ |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
192
+ | type | string | string |
193
+ | details | <ul><li>min: 13 tokens</li><li>mean: 163.82 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.34 tokens</li><li>max: 73 tokens</li></ul> |
194
+ * Samples:
195
+ | positive | anchor |
196
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
197
+ | <code>According to an example aspect of the present invention, there is provided an apparatus and method to control mining vehicles, in particular as electric mining vehicles, taking into account the state of charge the batteries of said mining vehicles.</code> | <code>MINING VEHICLE CONTROL</code> |
198
+ | <code>The invention is related to a new soft heterophasic random propylene copolymer with improved optical properties, as well as the process by which the heterophasic random propylene copolymer is produced.</code> | <code>SOFT HETEROPHASIC RANDOM PROPYLENE COPOLYMER WITH IMPROVED CLARITY</code> |
199
+ | <code>The present invention relates to a valve assembly 10 for controlling a volute connecting opening 324 of a multi-channel turbine 500. The valve assembly 10 comprises a housing portion 300, a valve body 100 and an internal lever 200. The housing portion 300 defines a first volute channel 312, a second volute channel 314 and a volute connecting region 320. The housing portion 300 further comprises a cavity 340. The cavity 340 is separated from the volutes 312, 314 and can be accessed from outside the housing portion 300 via a housing opening 342 which extends from outside the housing portion 300 into the cavity 340. The volute connection region 320 is located between the first volute channel 312 and the second volute channel 314 and defines a volute connecting opening 324. The valve body 100 is inserted in the cavity 340 of the housing portion 300 and comprises at least one fin 120. The internal lever 200 is coupled with the valve body 100 and configured to pivotably move the valve body 100 between a first position and a second position. In the first position of the valve body 100, the fin 120 blocks the volute connecting opening 324. Thus, exhaust gases are substantially prevented from overflowing from the first volute channel 312 to the second volute channel 314 and vice versa. In the second position of the valve body 100 the fin 120 clears the volute connecting opening 324. Thus, exhaust gases are enabled to overflow from the first volute channel 312 to the second volute channel 314 and vice versa.</code> | <code>VALVE ASSEMBLY FOR MULTI-CHANNEL TURBINE</code> |
200
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
201
+ ```json
202
+ {
203
+ "scale": 20.0,
204
+ "similarity_fct": "cos_sim"
205
+ }
206
+ ```
207
+
208
+ ### Training Hyperparameters
209
+ #### Non-Default Hyperparameters
210
+
211
+ - `eval_strategy`: steps
212
+ - `per_device_train_batch_size`: 4
213
+ - `per_device_eval_batch_size`: 2
214
+ - `learning_rate`: 2e-05
215
+ - `num_train_epochs`: 1
216
+ - `warmup_ratio`: 0.1
217
+ - `bf16`: True
218
+ - `batch_sampler`: no_duplicates
219
+
220
+ #### All Hyperparameters
221
+ <details><summary>Click to expand</summary>
222
+
223
+ - `overwrite_output_dir`: False
224
+ - `do_predict`: False
225
+ - `eval_strategy`: steps
226
+ - `prediction_loss_only`: True
227
+ - `per_device_train_batch_size`: 4
228
+ - `per_device_eval_batch_size`: 2
229
+ - `per_gpu_train_batch_size`: None
230
+ - `per_gpu_eval_batch_size`: None
231
+ - `gradient_accumulation_steps`: 1
232
+ - `eval_accumulation_steps`: None
233
+ - `torch_empty_cache_steps`: None
234
+ - `learning_rate`: 2e-05
235
+ - `weight_decay`: 0.0
236
+ - `adam_beta1`: 0.9
237
+ - `adam_beta2`: 0.999
238
+ - `adam_epsilon`: 1e-08
239
+ - `max_grad_norm`: 1.0
240
+ - `num_train_epochs`: 1
241
+ - `max_steps`: -1
242
+ - `lr_scheduler_type`: linear
243
+ - `lr_scheduler_kwargs`: {}
244
+ - `warmup_ratio`: 0.1
245
+ - `warmup_steps`: 0
246
+ - `log_level`: passive
247
+ - `log_level_replica`: warning
248
+ - `log_on_each_node`: True
249
+ - `logging_nan_inf_filter`: True
250
+ - `save_safetensors`: True
251
+ - `save_on_each_node`: False
252
+ - `save_only_model`: False
253
+ - `restore_callback_states_from_checkpoint`: False
254
+ - `no_cuda`: False
255
+ - `use_cpu`: False
256
+ - `use_mps_device`: False
257
+ - `seed`: 42
258
+ - `data_seed`: None
259
+ - `jit_mode_eval`: False
260
+ - `use_ipex`: False
261
+ - `bf16`: True
262
+ - `fp16`: False
263
+ - `fp16_opt_level`: O1
264
+ - `half_precision_backend`: auto
265
+ - `bf16_full_eval`: False
266
+ - `fp16_full_eval`: False
267
+ - `tf32`: None
268
+ - `local_rank`: 0
269
+ - `ddp_backend`: None
270
+ - `tpu_num_cores`: None
271
+ - `tpu_metrics_debug`: False
272
+ - `debug`: []
273
+ - `dataloader_drop_last`: False
274
+ - `dataloader_num_workers`: 0
275
+ - `dataloader_prefetch_factor`: None
276
+ - `past_index`: -1
277
+ - `disable_tqdm`: False
278
+ - `remove_unused_columns`: True
279
+ - `label_names`: None
280
+ - `load_best_model_at_end`: False
281
+ - `ignore_data_skip`: False
282
+ - `fsdp`: []
283
+ - `fsdp_min_num_params`: 0
284
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
285
+ - `fsdp_transformer_layer_cls_to_wrap`: None
286
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
287
+ - `deepspeed`: None
288
+ - `label_smoothing_factor`: 0.0
289
+ - `optim`: adamw_torch
290
+ - `optim_args`: None
291
+ - `adafactor`: False
292
+ - `group_by_length`: False
293
+ - `length_column_name`: length
294
+ - `ddp_find_unused_parameters`: None
295
+ - `ddp_bucket_cap_mb`: None
296
+ - `ddp_broadcast_buffers`: False
297
+ - `dataloader_pin_memory`: True
298
+ - `dataloader_persistent_workers`: False
299
+ - `skip_memory_metrics`: True
300
+ - `use_legacy_prediction_loop`: False
301
+ - `push_to_hub`: False
302
+ - `resume_from_checkpoint`: None
303
+ - `hub_model_id`: None
304
+ - `hub_strategy`: every_save
305
+ - `hub_private_repo`: False
306
+ - `hub_always_push`: False
307
+ - `gradient_checkpointing`: False
308
+ - `gradient_checkpointing_kwargs`: None
309
+ - `include_inputs_for_metrics`: False
310
+ - `eval_do_concat_batches`: True
311
+ - `fp16_backend`: auto
312
+ - `push_to_hub_model_id`: None
313
+ - `push_to_hub_organization`: None
314
+ - `mp_parameters`:
315
+ - `auto_find_batch_size`: False
316
+ - `full_determinism`: False
317
+ - `torchdynamo`: None
318
+ - `ray_scope`: last
319
+ - `ddp_timeout`: 1800
320
+ - `torch_compile`: False
321
+ - `torch_compile_backend`: None
322
+ - `torch_compile_mode`: None
323
+ - `dispatch_batches`: None
324
+ - `split_batches`: None
325
+ - `include_tokens_per_second`: False
326
+ - `include_num_input_tokens_seen`: False
327
+ - `neftune_noise_alpha`: None
328
+ - `optim_target_modules`: None
329
+ - `batch_eval_metrics`: False
330
+ - `eval_on_start`: False
331
+ - `use_liger_kernel`: False
332
+ - `eval_use_gather_object`: False
333
+ - `batch_sampler`: no_duplicates
334
+ - `multi_dataset_batch_sampler`: proportional
335
+
336
+ </details>
337
+
338
+ ### Framework Versions
339
+ - Python: 3.11.9
340
+ - Sentence Transformers: 3.2.0
341
+ - Transformers: 4.45.2
342
+ - PyTorch: 2.5.0+cu124
343
+ - Accelerate: 1.0.1
344
+ - Datasets: 3.0.1
345
+ - Tokenizers: 0.20.1
346
+
347
+ ## Citation
348
+
349
+ ### BibTeX
350
+
351
+ #### Sentence Transformers
352
+ ```bibtex
353
+ @inproceedings{reimers-2019-sentence-bert,
354
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
355
+ author = "Reimers, Nils and Gurevych, Iryna",
356
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
357
+ month = "11",
358
+ year = "2019",
359
+ publisher = "Association for Computational Linguistics",
360
+ url = "https://arxiv.org/abs/1908.10084",
361
+ }
362
+ ```
363
+
364
+ #### MultipleNegativesRankingLoss
365
+ ```bibtex
366
+ @misc{henderson2017efficient,
367
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
368
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
369
+ year={2017},
370
+ eprint={1705.00652},
371
+ archivePrefix={arXiv},
372
+ primaryClass={cs.CL}
373
+ }
374
+ ```
375
+
376
+ <!--
377
+ ## Glossary
378
+
379
+ *Clearly define terms in order to be accessible across audiences.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Authors
384
+
385
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
386
+ -->
387
+
388
+ <!--
389
+ ## Model Card Contact
390
+
391
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
392
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61b0d145478f9a0fed20b457a2a9a63fdeaf620768a72a6580f89b929984bfd7
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff