File size: 1,882 Bytes
c825110 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import torch
import onnx
import onnxruntime as rt
from torchvision import transforms as T
from tokenizer_base import Tokenizer
import pathlib
import os
import sys
from PIL import Image
from huggingface_hub import Repository
repo = Repository(
local_dir="secret_models",
repo_type="model",
clone_from="docparser/captcha",
token=True
)
repo.git_pull()
cwd = pathlib.Path(__file__).parent.resolve()
img_size = (32, 128)
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
tokenizer_base = Tokenizer(charset)
def get_transform(img_size):
transforms = []
transforms.extend([
T.Resize(img_size, T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5)
])
return T.Compose(transforms)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def initialize_model(model_file):
transform = get_transform(img_size)
onnx_model = onnx.load(model_file)
onnx.checker.check_model(onnx_model)
ort_session = rt.InferenceSession(model_file)
return transform, ort_session
def get_text(image_path):
img_org = Image.open(image_path)
# Preprocess. Model expects a batch of images with shape: (B, C, H, W)
x = transform(img_org.convert('RGB')).unsqueeze(0)
# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
logits = ort_session.run(None, ort_inputs)[0]
probs = torch.tensor(logits).softmax(-1)
preds, probs = tokenizer_base.decode(probs)
preds = preds[0]
return preds
model_file = os.path.join(cwd, "secret_models", "captcha.onnx")
transform, ort_session = initialize_model(model_file=model_file)
if __name__ == "__main__":
image_path = sys.argv[1]
res = get_text(image_path)
print(res)
|