File size: 2,090 Bytes
f24f2e7
c825110
 
 
 
 
 
 
 
f24f2e7
 
 
8e71bd4
f24f2e7
8e71bd4
f24f2e7
 
 
 
8e71bd4
c825110
f24f2e7
 
 
 
 
 
 
c825110
f24f2e7
 
 
 
c825110
e868a55
f24f2e7
 
 
 
 
 
 
 
 
 
 
 
c825110
 
f24f2e7
 
c825110
8e71bd4
f24f2e7
 
c825110
f24f2e7
8e71bd4
f24f2e7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import sys
import torch
import onnx
import onnxruntime as rt
from torchvision import transforms as T
from tokenizer_base import Tokenizer
from PIL import Image


class DocumentParserModel:
    def __init__(
        self,
        model_path,
        img_size,
        charset
    ):
        self.charset = charset
        self.tokenizer_base = Tokenizer(self.charset)
        self.transform = self.create_transform_pipeline(img_size)
        self.ort_session = self.initialize_onnx_model(str(model_path))

    def create_transform_pipeline(self, img_size):
        transforms = [
            T.Resize(img_size, T.InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(0.5, 0.5),
        ]
        return T.Compose(transforms)

    def initialize_onnx_model(self, model_path):
        onnx_model = onnx.load(model_path)
        onnx.checker.check_model(onnx_model)
        return rt.InferenceSession(model_path)

    # TODO: test with image blob
    def predict_text(self, image_path):
        try:
            with Image.open(image_path) as img_org:
                x = self.transform(img_org.convert("RGB")).unsqueeze(0)
                ort_inputs = {self.ort_session.get_inputs()[0].name: x.cpu().numpy()}
                logits = self.ort_session.run(None, ort_inputs)[0]
                probs = torch.tensor(logits).softmax(-1)
                preds, _ = self.tokenizer_base.decode(probs)
                return preds[0]
        except IOError:
            print(f"Error: Cannot open image {image_path}")
            return None


if __name__ == "__main__":
    import sys

    model_path = "captcha.onnx"
    img_size = (32, 128)
    charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"

    doc_parser = DocumentParserModel(
        model_path=model_path,
        img_size=img_size,
        charset=charset,
    )
    if len(sys.argv) > 1:
        image_path = sys.argv[1]
        result = doc_parser.predict_text(image_path)
        print(result)
    else:
        print("Please provide an image path.")