# Ref. [Deploying a Machine Learning Model to AWS Lambda | TestDriven.io](https://testdriven.io/blog/ml-model-aws-lambda/) import logging from app import DocumentParserModel # initialize logger and model during Lambda's cold start LOGGER = logging.getLogger() LOGGER.setLevel(logging.INFO) model_path = "captcha.onnx" img_size = (32, 128) charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" model = DocumentParserModel( model_path=model_path, img_size=img_size, charset=charset, ) def lambda_handle(event, context): # Only used to keep the Lambda warm if event.get("source") == "KEEP_LAMBDA_WARM": LOGGER.info("No ML work to do. Just staying warm...") return "Keeping Lambda warm" return {"statusCode": 200, "vc": model.predict_text(image_path=event["image_path"])}