# Ref. [Deploying a Machine Learning Model to AWS Lambda | TestDriven.io](https://testdriven.io/blog/ml-model-aws-lambda/) import logging from app import DocumentParserModel # initialize logger and model during Lambda's cold start LOGGER = logging.getLogger() LOGGER.setLevel(logging.INFO) model = DocumentParserModel() def lambda_handle(event, context): # Only used to keep the Lambda warm if event.get("source") == "KEEP_LAMBDA_WARM": LOGGER.info("No ML work to do. Just staying warm...") return "Keeping Lambda warm" return {"statusCode": 200, "result": model.predict_text(image_blob=event["image_blob"])}