stinoco commited on
Commit
d6689cc
1 Parent(s): 21a38e0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -22.61 +/- 2.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9069378371e2c3aa9957af1289d2a9be19633673493d9a3a18c8970b4fb19e25
3
+ size 65896
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7effd6062f70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7effd605dd80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "net_arch": [
16
+ 64,
17
+ 64
18
+ ],
19
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
20
+ "optimizer_kwargs": {
21
+ "alpha": 0.99,
22
+ "eps": 1e-05,
23
+ "weight_decay": 0
24
+ }
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
28
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
29
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
30
+ "_shape": null,
31
+ "dtype": null,
32
+ "_np_random": null
33
+ },
34
+ "action_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 3
40
+ ],
41
+ "low": "[-1. -1. -1.]",
42
+ "high": "[1. 1. 1.]",
43
+ "bounded_below": "[ True True True]",
44
+ "bounded_above": "[ True True True]",
45
+ "_np_random": null
46
+ },
47
+ "n_envs": 4,
48
+ "num_timesteps": 1000000,
49
+ "_total_timesteps": 1000000,
50
+ "_num_timesteps_at_start": 0,
51
+ "seed": null,
52
+ "action_noise": null,
53
+ "start_time": 1677618127043242573,
54
+ "learning_rate": 0.001,
55
+ "tensorboard_log": null,
56
+ "lr_schedule": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "_last_obs": {
61
+ ":type:": "<class 'collections.OrderedDict'>",
62
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KCZP58p0r8u20i+r0VyP9ZRUj9yyl6/3egYP9ZkID4yJr8+jYbNvndKn7+ku5w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLyUaA5LBEsGhpRoEnSUUpR1Lg==",
63
+ "achieved_goal": "[[ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]]",
64
+ "desired_goal": "[[ 1.2002201 -1.6418952 -0.1961486 ]\n [ 0.9463758 0.8215612 -0.8702766 ]\n [ 0.5973032 0.15663466 0.37333828]\n [-0.40141717 -1.24446 0.30611908]]",
65
+ "observation": "[[ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]]"
66
+ },
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'collections.OrderedDict'>",
73
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADsnYPQUhGT6d5Rk+tkrLPGq/L71TLIo+TgKoOxDo3b01KGI+yk4Nvtp3Rj1d8Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
74
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
75
+ "desired_goal": "[[ 0.10585223 0.14954002 0.15028997]\n [ 0.0248159 -0.04290716 0.26986942]\n [ 0.00512723 -0.10835278 0.2208565 ]\n [-0.13799587 0.04845414 0.18255754]]",
76
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
77
+ },
78
+ "_episode_num": 0,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.0,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ny0GafFM8CUhpRSlIwBbJRLMowBdJRHQKgVcemvW6N1fZQoaAZoCWgPQwjsUbgehQs6wJSGlFKUaBVLMmgWR0CoFR1Da4+bdX2UKGgGaAloD0MIYk1lUdhhOMCUhpRSlGgVSzJoFkdAqBTKQtBfKXV9lChoBmgJaA9DCFmis8wiwDjAlIaUUpRoFUsyaBZHQKgUeHgxagV1fZQoaAZoCWgPQwiMn8a9+dk4wJSGlFKUaBVLMmgWR0CoFpCm2sq8dX2UKGgGaAloD0MI/OO9amUaKsCUhpRSlGgVSzJoFkdAqBY7/82rGXV9lChoBmgJaA9DCAby7PKti0fAlIaUUpRoFUsyaBZHQKgV6SdOIqN1fZQoaAZoCWgPQwhIwVPIlboqwJSGlFKUaBVLMmgWR0CoFZdvS+g2dX2UKGgGaAloD0MIJ2w/GeNDOMCUhpRSlGgVSzJoFkdAqBeqm4y44XV9lChoBmgJaA9DCEpfCDnvCzDAlIaUUpRoFUsyaBZHQKgXVgF5fMR1fZQoaAZoCWgPQwgrEhPU8PUwwJSGlFKUaBVLMmgWR0CoFwMYl6Z6dX2UKGgGaAloD0MII7vSMlJrNsCUhpRSlGgVSzJoFkdAqBaxY3eenXV9lChoBmgJaA9DCOzctBmnGTrAlIaUUpRoFUsyaBZHQKgYwoo/iYN1fZQoaAZoCWgPQwj3kzE+zA4twJSGlFKUaBVLMmgWR0CoGG3sw+MZdX2UKGgGaAloD0MIB0MdVrh3RsCUhpRSlGgVSzJoFkdAqBgbFbVz63V9lChoBmgJaA9DCDj1geSdsynAlIaUUpRoFUsyaBZHQKgXyWZZ0S11fZQoaAZoCWgPQwiNXaJ6a8QzwJSGlFKUaBVLMmgWR0CoGeenZTQ3dX2UKGgGaAloD0MIZyrEI/EOMMCUhpRSlGgVSzJoFkdAqBmTFVDKHXV9lChoBmgJaA9DCHPbvkf9MUbAlIaUUpRoFUsyaBZHQKgZQC8OCoV1fZQoaAZoCWgPQwhwzojS3mBHwJSGlFKUaBVLMmgWR0CoGO5+QU5/dX2UKGgGaAloD0MI8djPYinqRsCUhpRSlGgVSzJoFkdAqBsLeQ+2VnV9lChoBmgJaA9DCOuQm+EGqkXAlIaUUpRoFUsyaBZHQKgatw+dK/V1fZQoaAZoCWgPQwhIp658lp85wJSGlFKUaBVLMmgWR0CoGmQkgOjJdX2UKGgGaAloD0MIEOz4LxD4N8CUhpRSlGgVSzJoFkdAqBoSeqaPS3V9lChoBmgJaA9DCHrFU480wDDAlIaUUpRoFUsyaBZHQKgcN3xFy7x1fZQoaAZoCWgPQwjqJFtdTqtGwJSGlFKUaBVLMmgWR0CoG+LoOhCddX2UKGgGaAloD0MIg94bQwCoKcCUhpRSlGgVSzJoFkdAqBuP/o7muHV9lChoBmgJaA9DCJilnZrLUTPAlIaUUpRoFUsyaBZHQKgbPm7rcCZ1fZQoaAZoCWgPQwh5AmGnWNk5wJSGlFKUaBVLMmgWR0CoHUtzKcNIdX2UKGgGaAloD0MIdVq3Qe03R8CUhpRSlGgVSzJoFkdAqBz25H3DenV9lChoBmgJaA9DCNGwGHWtcTPAlIaUUpRoFUsyaBZHQKgco+yquKZ1fZQoaAZoCWgPQwjKNJpcjEE1wJSGlFKUaBVLMmgWR0CoHFIpYs/ZdX2UKGgGaAloD0MIW1653jYfMsCUhpRSlGgVSzJoFkdAqB5hqEeyRnV9lChoBmgJaA9DCB0c7E0MVTfAlIaUUpRoFUsyaBZHQKgeDRWtEG91fZQoaAZoCWgPQwjQDriumC01wJSGlFKUaBVLMmgWR0CoHbomXw9adX2UKGgGaAloD0MIdVd2weA6M8CUhpRSlGgVSzJoFkdAqB1ohB7eEnV9lChoBmgJaA9DCGuBPSZSFkjAlIaUUpRoFUsyaBZHQKgfgr9VFQV1fZQoaAZoCWgPQwjqlEc3wr4wwJSGlFKUaBVLMmgWR0CoHy47ihnKdX2UKGgGaAloD0MIKbAApgzaRsCUhpRSlGgVSzJoFkdAqB7bUXpGF3V9lChoBmgJaA9DCGBzDp4JvSrAlIaUUpRoFUsyaBZHQKgeibF0gbJ1fZQoaAZoCWgPQwjw+PauQaM4wJSGlFKUaBVLMmgWR0CoIJg9vCMxdX2UKGgGaAloD0MIIHwo0ZJXMcCUhpRSlGgVSzJoFkdAqCBDoEB8yHV9lChoBmgJaA9DCEYL0LaaLTjAlIaUUpRoFUsyaBZHQKgf8KJl8PZ1fZQoaAZoCWgPQwgQr+sX7Ko3wJSGlFKUaBVLMmgWR0CoH570OEuhdX2UKGgGaAloD0MIOUIG8uzmRcCUhpRSlGgVSzJoFkdAqCI6M3qA0HV9lChoBmgJaA9DCAh3Z+22kzHAlIaUUpRoFUsyaBZHQKgh5mOEM9d1fZQoaAZoCWgPQwj/HydMGGE7wJSGlFKUaBVLMmgWR0CoIZQ++ueSdX2UKGgGaAloD0MI/5O/e0ehOMCUhpRSlGgVSzJoFkdAqCFDVjI7vHV9lChoBmgJaA9DCBIUP8bcZTPAlIaUUpRoFUsyaBZHQKgkDO1v2oN1fZQoaAZoCWgPQwid9SnHZNE3wJSGlFKUaBVLMmgWR0CoI7k/bCaadX2UKGgGaAloD0MIZ4F2hxQvN8CUhpRSlGgVSzJoFkdAqCNnHWBjF3V9lChoBmgJaA9DCMQ/bOnRmDfAlIaUUpRoFUsyaBZHQKgjFmlqJuV1fZQoaAZoCWgPQwgLQQ5KmL0xwJSGlFKUaBVLMmgWR0CoJdwlruYydX2UKGgGaAloD0MIoKnXLQLDOMCUhpRSlGgVSzJoFkdAqCWIe/5+IHV9lChoBmgJaA9DCLmq7LsisDHAlIaUUpRoFUsyaBZHQKglNnwob4t1fZQoaAZoCWgPQwhEhlW8kY03wJSGlFKUaBVLMmgWR0CoJOWQwK0EdX2UKGgGaAloD0MI8IrgfyvFNsCUhpRSlGgVSzJoFkdAqCe6pm29c3V9lChoBmgJaA9DCGpLHeT1GCvAlIaUUpRoFUsyaBZHQKgnZwEyLyd1fZQoaAZoCWgPQwhYycfuAvk1wJSGlFKUaBVLMmgWR0CoJxUUXYUWdX2UKGgGaAloD0MInStKCcH6OcCUhpRSlGgVSzJoFkdAqCbEXxe9jHV9lChoBmgJaA9DCE6XxcTmIzrAlIaUUpRoFUsyaBZHQKgppW9US7J1fZQoaAZoCWgPQwiIghlTsJ4wwJSGlFKUaBVLMmgWR0CoKVHOKO1fdX2UKGgGaAloD0MIOX6oNGKkRsCUhpRSlGgVSzJoFkdAqCj/5i3G43V9lChoBmgJaA9DCAthNZawxi/AlIaUUpRoFUsyaBZHQKgory1/lQx1fZQoaAZoCWgPQwjAywwbZftFwJSGlFKUaBVLMmgWR0CoK0hV2icodX2UKGgGaAloD0MIDw2LUdfiM8CUhpRSlGgVSzJoFkdAqCrzwc5sCXV9lChoBmgJaA9DCHvBpzl5GTXAlIaUUpRoFUsyaBZHQKgqoN0eU6h1fZQoaAZoCWgPQwhinSrfM8IywJSGlFKUaBVLMmgWR0CoKk8ifQKKdX2UKGgGaAloD0MIf8LZrWViOMCUhpRSlGgVSzJoFkdAqCxc3XI2fnV9lChoBmgJaA9DCDdV98jmQjbAlIaUUpRoFUsyaBZHQKgsCNQ0oBt1fZQoaAZoCWgPQwifPCzUmso0wJSGlFKUaBVLMmgWR0CoK7aUA1ejdX2UKGgGaAloD0MIBvcDHhhiR8CUhpRSlGgVSzJoFkdAqCtldxAB1nV9lChoBmgJaA9DCNC1L6AXVjHAlIaUUpRoFUsyaBZHQKgte2SdOIt1fZQoaAZoCWgPQwiPHVTiOpYxwJSGlFKUaBVLMmgWR0CoLSa+evpydX2UKGgGaAloD0MIXKrSFteYMMCUhpRSlGgVSzJoFkdAqCzTujRD1HV9lChoBmgJaA9DCMbhzK/mwEfAlIaUUpRoFUsyaBZHQKgsgfeUILR1fZQoaAZoCWgPQwgPtAJDVvcwwJSGlFKUaBVLMmgWR0CoLwGWldkbdX2UKGgGaAloD0MIOIO/X8yeL8CUhpRSlGgVSzJoFkdAqC6tyHVPN3V9lChoBmgJaA9DCI1F09nJZDjAlIaUUpRoFUsyaBZHQKguW6nR9gF1fZQoaAZoCWgPQwjx9iAE5Gc4wJSGlFKUaBVLMmgWR0CoLgrnLaEjdX2UKGgGaAloD0MID5iHTPmsR8CUhpRSlGgVSzJoFkdAqDDWC04R3HV9lChoBmgJaA9DCBUZHZCEkTjAlIaUUpRoFUsyaBZHQKgwgkona391fZQoaAZoCWgPQwh4fHvXoHMwwJSGlFKUaBVLMmgWR0CoMDAfuCwsdX2UKGgGaAloD0MIlE25wrv0K8CUhpRSlGgVSzJoFkdAqC/fPC2tuHV9lChoBmgJaA9DCKiN6nQgMznAlIaUUpRoFUsyaBZHQKgyqt3fQ8h1fZQoaAZoCWgPQwi0ykxp/edIwJSGlFKUaBVLMmgWR0CoMlc7hegMdX2UKGgGaAloD0MIPKWD9X++N8CUhpRSlGgVSzJoFkdAqDIFkjHGTHV9lChoBmgJaA9DCO4HPDCAPDPAlIaUUpRoFUsyaBZHQKgxtOcDr7h1fZQoaAZoCWgPQwjEJjJzgfstwJSGlFKUaBVLMmgWR0CoNIWuX/o8dX2UKGgGaAloD0MI4c/wZg1yMsCUhpRSlGgVSzJoFkdAqDQyLQ5WBHV9lChoBmgJaA9DCNGSx9PyP0fAlIaUUpRoFUsyaBZHQKgz4EEkjX51fZQoaAZoCWgPQwi2SxsOS3sywJSGlFKUaBVLMmgWR0CoM4+A3DNydX2UKGgGaAloD0MINUI/U6+VScCUhpRSlGgVSzJoFkdAqDZkWhysCHV9lChoBmgJaA9DCI/8wcBzlzTAlIaUUpRoFUsyaBZHQKg2EMBIWgx1fZQoaAZoCWgPQwgVcqWeBYk3wJSGlFKUaBVLMmgWR0CoNb62OQyRdX2UKGgGaAloD0MIxhft8ULGNMCUhpRSlGgVSzJoFkdAqDVuA7Ppp3V9lChoBmgJaA9DCB2wq8lTukjAlIaUUpRoFUsyaBZHQKg3+WsRxtJ1fZQoaAZoCWgPQwgfSN45lFkuwJSGlFKUaBVLMmgWR0CoN6TC+De1dX2UKGgGaAloD0MIeeblsPseLMCUhpRSlGgVSzJoFkdAqDdRxrBTGnV9lChoBmgJaA9DCJOoF3ya8znAlIaUUpRoFUsyaBZHQKg3AAG0NSZ1ZS4="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 50000,
91
+ "n_steps": 5,
92
+ "gamma": 0.95,
93
+ "gae_lambda": 1.0,
94
+ "ent_coef": 0.0,
95
+ "vf_coef": 0.5,
96
+ "max_grad_norm": 0.5,
97
+ "normalize_advantage": false
98
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d207b4d2cf706467055ef161203c62ccdebc24e9c8227de1b27cfa21b44acf9f
3
+ size 23755
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c943fb18102e2f67558253c539a4a0bb7d4109f2991e31384b96047be60d4383
3
+ size 24779
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7effd6062f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7effd605dd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677618127043242573, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KCZP58p0r8u20i+r0VyP9ZRUj9yyl6/3egYP9ZkID4yJr8+jYbNvndKn7+ku5w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]]", "desired_goal": "[[ 1.2002201 -1.6418952 -0.1961486 ]\n [ 0.9463758 0.8215612 -0.8702766 ]\n [ 0.5973032 0.15663466 0.37333828]\n [-0.40141717 -1.24446 0.30611908]]", "observation": "[[ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADsnYPQUhGT6d5Rk+tkrLPGq/L71TLIo+TgKoOxDo3b01KGI+yk4Nvtp3Rj1d8Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10585223 0.14954002 0.15028997]\n [ 0.0248159 -0.04290716 0.26986942]\n [ 0.00512723 -0.10835278 0.2208565 ]\n [-0.13799587 0.04845414 0.18255754]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ny0GafFM8CUhpRSlIwBbJRLMowBdJRHQKgVcemvW6N1fZQoaAZoCWgPQwjsUbgehQs6wJSGlFKUaBVLMmgWR0CoFR1Da4+bdX2UKGgGaAloD0MIYk1lUdhhOMCUhpRSlGgVSzJoFkdAqBTKQtBfKXV9lChoBmgJaA9DCFmis8wiwDjAlIaUUpRoFUsyaBZHQKgUeHgxagV1fZQoaAZoCWgPQwiMn8a9+dk4wJSGlFKUaBVLMmgWR0CoFpCm2sq8dX2UKGgGaAloD0MI/OO9amUaKsCUhpRSlGgVSzJoFkdAqBY7/82rGXV9lChoBmgJaA9DCAby7PKti0fAlIaUUpRoFUsyaBZHQKgV6SdOIqN1fZQoaAZoCWgPQwhIwVPIlboqwJSGlFKUaBVLMmgWR0CoFZdvS+g2dX2UKGgGaAloD0MIJ2w/GeNDOMCUhpRSlGgVSzJoFkdAqBeqm4y44XV9lChoBmgJaA9DCEpfCDnvCzDAlIaUUpRoFUsyaBZHQKgXVgF5fMR1fZQoaAZoCWgPQwgrEhPU8PUwwJSGlFKUaBVLMmgWR0CoFwMYl6Z6dX2UKGgGaAloD0MII7vSMlJrNsCUhpRSlGgVSzJoFkdAqBaxY3eenXV9lChoBmgJaA9DCOzctBmnGTrAlIaUUpRoFUsyaBZHQKgYwoo/iYN1fZQoaAZoCWgPQwj3kzE+zA4twJSGlFKUaBVLMmgWR0CoGG3sw+MZdX2UKGgGaAloD0MIB0MdVrh3RsCUhpRSlGgVSzJoFkdAqBgbFbVz63V9lChoBmgJaA9DCDj1geSdsynAlIaUUpRoFUsyaBZHQKgXyWZZ0S11fZQoaAZoCWgPQwiNXaJ6a8QzwJSGlFKUaBVLMmgWR0CoGeenZTQ3dX2UKGgGaAloD0MIZyrEI/EOMMCUhpRSlGgVSzJoFkdAqBmTFVDKHXV9lChoBmgJaA9DCHPbvkf9MUbAlIaUUpRoFUsyaBZHQKgZQC8OCoV1fZQoaAZoCWgPQwhwzojS3mBHwJSGlFKUaBVLMmgWR0CoGO5+QU5/dX2UKGgGaAloD0MI8djPYinqRsCUhpRSlGgVSzJoFkdAqBsLeQ+2VnV9lChoBmgJaA9DCOuQm+EGqkXAlIaUUpRoFUsyaBZHQKgatw+dK/V1fZQoaAZoCWgPQwhIp658lp85wJSGlFKUaBVLMmgWR0CoGmQkgOjJdX2UKGgGaAloD0MIEOz4LxD4N8CUhpRSlGgVSzJoFkdAqBoSeqaPS3V9lChoBmgJaA9DCHrFU480wDDAlIaUUpRoFUsyaBZHQKgcN3xFy7x1fZQoaAZoCWgPQwjqJFtdTqtGwJSGlFKUaBVLMmgWR0CoG+LoOhCddX2UKGgGaAloD0MIg94bQwCoKcCUhpRSlGgVSzJoFkdAqBuP/o7muHV9lChoBmgJaA9DCJilnZrLUTPAlIaUUpRoFUsyaBZHQKgbPm7rcCZ1fZQoaAZoCWgPQwh5AmGnWNk5wJSGlFKUaBVLMmgWR0CoHUtzKcNIdX2UKGgGaAloD0MIdVq3Qe03R8CUhpRSlGgVSzJoFkdAqBz25H3DenV9lChoBmgJaA9DCNGwGHWtcTPAlIaUUpRoFUsyaBZHQKgco+yquKZ1fZQoaAZoCWgPQwjKNJpcjEE1wJSGlFKUaBVLMmgWR0CoHFIpYs/ZdX2UKGgGaAloD0MIW1653jYfMsCUhpRSlGgVSzJoFkdAqB5hqEeyRnV9lChoBmgJaA9DCB0c7E0MVTfAlIaUUpRoFUsyaBZHQKgeDRWtEG91fZQoaAZoCWgPQwjQDriumC01wJSGlFKUaBVLMmgWR0CoHbomXw9adX2UKGgGaAloD0MIdVd2weA6M8CUhpRSlGgVSzJoFkdAqB1ohB7eEnV9lChoBmgJaA9DCGuBPSZSFkjAlIaUUpRoFUsyaBZHQKgfgr9VFQV1fZQoaAZoCWgPQwjqlEc3wr4wwJSGlFKUaBVLMmgWR0CoHy47ihnKdX2UKGgGaAloD0MIKbAApgzaRsCUhpRSlGgVSzJoFkdAqB7bUXpGF3V9lChoBmgJaA9DCGBzDp4JvSrAlIaUUpRoFUsyaBZHQKgeibF0gbJ1fZQoaAZoCWgPQwjw+PauQaM4wJSGlFKUaBVLMmgWR0CoIJg9vCMxdX2UKGgGaAloD0MIIHwo0ZJXMcCUhpRSlGgVSzJoFkdAqCBDoEB8yHV9lChoBmgJaA9DCEYL0LaaLTjAlIaUUpRoFUsyaBZHQKgf8KJl8PZ1fZQoaAZoCWgPQwgQr+sX7Ko3wJSGlFKUaBVLMmgWR0CoH570OEuhdX2UKGgGaAloD0MIOUIG8uzmRcCUhpRSlGgVSzJoFkdAqCI6M3qA0HV9lChoBmgJaA9DCAh3Z+22kzHAlIaUUpRoFUsyaBZHQKgh5mOEM9d1fZQoaAZoCWgPQwj/HydMGGE7wJSGlFKUaBVLMmgWR0CoIZQ++ueSdX2UKGgGaAloD0MI/5O/e0ehOMCUhpRSlGgVSzJoFkdAqCFDVjI7vHV9lChoBmgJaA9DCBIUP8bcZTPAlIaUUpRoFUsyaBZHQKgkDO1v2oN1fZQoaAZoCWgPQwid9SnHZNE3wJSGlFKUaBVLMmgWR0CoI7k/bCaadX2UKGgGaAloD0MIZ4F2hxQvN8CUhpRSlGgVSzJoFkdAqCNnHWBjF3V9lChoBmgJaA9DCMQ/bOnRmDfAlIaUUpRoFUsyaBZHQKgjFmlqJuV1fZQoaAZoCWgPQwgLQQ5KmL0xwJSGlFKUaBVLMmgWR0CoJdwlruYydX2UKGgGaAloD0MIoKnXLQLDOMCUhpRSlGgVSzJoFkdAqCWIe/5+IHV9lChoBmgJaA9DCLmq7LsisDHAlIaUUpRoFUsyaBZHQKglNnwob4t1fZQoaAZoCWgPQwhEhlW8kY03wJSGlFKUaBVLMmgWR0CoJOWQwK0EdX2UKGgGaAloD0MI8IrgfyvFNsCUhpRSlGgVSzJoFkdAqCe6pm29c3V9lChoBmgJaA9DCGpLHeT1GCvAlIaUUpRoFUsyaBZHQKgnZwEyLyd1fZQoaAZoCWgPQwhYycfuAvk1wJSGlFKUaBVLMmgWR0CoJxUUXYUWdX2UKGgGaAloD0MInStKCcH6OcCUhpRSlGgVSzJoFkdAqCbEXxe9jHV9lChoBmgJaA9DCE6XxcTmIzrAlIaUUpRoFUsyaBZHQKgppW9US7J1fZQoaAZoCWgPQwiIghlTsJ4wwJSGlFKUaBVLMmgWR0CoKVHOKO1fdX2UKGgGaAloD0MIOX6oNGKkRsCUhpRSlGgVSzJoFkdAqCj/5i3G43V9lChoBmgJaA9DCAthNZawxi/AlIaUUpRoFUsyaBZHQKgory1/lQx1fZQoaAZoCWgPQwjAywwbZftFwJSGlFKUaBVLMmgWR0CoK0hV2icodX2UKGgGaAloD0MIDw2LUdfiM8CUhpRSlGgVSzJoFkdAqCrzwc5sCXV9lChoBmgJaA9DCHvBpzl5GTXAlIaUUpRoFUsyaBZHQKgqoN0eU6h1fZQoaAZoCWgPQwhinSrfM8IywJSGlFKUaBVLMmgWR0CoKk8ifQKKdX2UKGgGaAloD0MIf8LZrWViOMCUhpRSlGgVSzJoFkdAqCxc3XI2fnV9lChoBmgJaA9DCDdV98jmQjbAlIaUUpRoFUsyaBZHQKgsCNQ0oBt1fZQoaAZoCWgPQwifPCzUmso0wJSGlFKUaBVLMmgWR0CoK7aUA1ejdX2UKGgGaAloD0MIBvcDHhhiR8CUhpRSlGgVSzJoFkdAqCtldxAB1nV9lChoBmgJaA9DCNC1L6AXVjHAlIaUUpRoFUsyaBZHQKgte2SdOIt1fZQoaAZoCWgPQwiPHVTiOpYxwJSGlFKUaBVLMmgWR0CoLSa+evpydX2UKGgGaAloD0MIXKrSFteYMMCUhpRSlGgVSzJoFkdAqCzTujRD1HV9lChoBmgJaA9DCMbhzK/mwEfAlIaUUpRoFUsyaBZHQKgsgfeUILR1fZQoaAZoCWgPQwgPtAJDVvcwwJSGlFKUaBVLMmgWR0CoLwGWldkbdX2UKGgGaAloD0MIOIO/X8yeL8CUhpRSlGgVSzJoFkdAqC6tyHVPN3V9lChoBmgJaA9DCI1F09nJZDjAlIaUUpRoFUsyaBZHQKguW6nR9gF1fZQoaAZoCWgPQwjx9iAE5Gc4wJSGlFKUaBVLMmgWR0CoLgrnLaEjdX2UKGgGaAloD0MID5iHTPmsR8CUhpRSlGgVSzJoFkdAqDDWC04R3HV9lChoBmgJaA9DCBUZHZCEkTjAlIaUUpRoFUsyaBZHQKgwgkona391fZQoaAZoCWgPQwh4fHvXoHMwwJSGlFKUaBVLMmgWR0CoMDAfuCwsdX2UKGgGaAloD0MIlE25wrv0K8CUhpRSlGgVSzJoFkdAqC/fPC2tuHV9lChoBmgJaA9DCKiN6nQgMznAlIaUUpRoFUsyaBZHQKgyqt3fQ8h1fZQoaAZoCWgPQwi0ykxp/edIwJSGlFKUaBVLMmgWR0CoMlc7hegMdX2UKGgGaAloD0MIPKWD9X++N8CUhpRSlGgVSzJoFkdAqDIFkjHGTHV9lChoBmgJaA9DCO4HPDCAPDPAlIaUUpRoFUsyaBZHQKgxtOcDr7h1fZQoaAZoCWgPQwjEJjJzgfstwJSGlFKUaBVLMmgWR0CoNIWuX/o8dX2UKGgGaAloD0MI4c/wZg1yMsCUhpRSlGgVSzJoFkdAqDQyLQ5WBHV9lChoBmgJaA9DCNGSx9PyP0fAlIaUUpRoFUsyaBZHQKgz4EEkjX51fZQoaAZoCWgPQwi2SxsOS3sywJSGlFKUaBVLMmgWR0CoM4+A3DNydX2UKGgGaAloD0MINUI/U6+VScCUhpRSlGgVSzJoFkdAqDZkWhysCHV9lChoBmgJaA9DCI/8wcBzlzTAlIaUUpRoFUsyaBZHQKg2EMBIWgx1fZQoaAZoCWgPQwgVcqWeBYk3wJSGlFKUaBVLMmgWR0CoNb62OQyRdX2UKGgGaAloD0MIxhft8ULGNMCUhpRSlGgVSzJoFkdAqDVuA7Ppp3V9lChoBmgJaA9DCB2wq8lTukjAlIaUUpRoFUsyaBZHQKg3+WsRxtJ1fZQoaAZoCWgPQwgfSN45lFkuwJSGlFKUaBVLMmgWR0CoN6TC+De1dX2UKGgGaAloD0MIeeblsPseLMCUhpRSlGgVSzJoFkdAqDdRxrBTGnV9lChoBmgJaA9DCJOoF3ya8znAlIaUUpRoFUsyaBZHQKg3AAG0NSZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (541 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -22.609167648106812, "std_reward": 2.7408506234224275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T21:53:51.913462"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d1a303421664a49a741f43c3556cac5c310c442f37d21335ca7c05f186dc013
3
+ size 3056