Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +98 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -22.61 +/- 2.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9069378371e2c3aa9957af1289d2a9be19633673493d9a3a18c8970b4fb19e25
|
3 |
+
size 65896
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7effd6062f70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7effd605dd80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"net_arch": [
|
16 |
+
64,
|
17 |
+
64
|
18 |
+
],
|
19 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
20 |
+
"optimizer_kwargs": {
|
21 |
+
"alpha": 0.99,
|
22 |
+
"eps": 1e-05,
|
23 |
+
"weight_decay": 0
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
28 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
29 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
30 |
+
"_shape": null,
|
31 |
+
"dtype": null,
|
32 |
+
"_np_random": null
|
33 |
+
},
|
34 |
+
"action_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
3
|
40 |
+
],
|
41 |
+
"low": "[-1. -1. -1.]",
|
42 |
+
"high": "[1. 1. 1.]",
|
43 |
+
"bounded_below": "[ True True True]",
|
44 |
+
"bounded_above": "[ True True True]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"n_envs": 4,
|
48 |
+
"num_timesteps": 1000000,
|
49 |
+
"_total_timesteps": 1000000,
|
50 |
+
"_num_timesteps_at_start": 0,
|
51 |
+
"seed": null,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1677618127043242573,
|
54 |
+
"learning_rate": 0.001,
|
55 |
+
"tensorboard_log": null,
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'collections.OrderedDict'>",
|
62 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KCZP58p0r8u20i+r0VyP9ZRUj9yyl6/3egYP9ZkID4yJr8+jYbNvndKn7+ku5w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
63 |
+
"achieved_goal": "[[ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]]",
|
64 |
+
"desired_goal": "[[ 1.2002201 -1.6418952 -0.1961486 ]\n [ 0.9463758 0.8215612 -0.8702766 ]\n [ 0.5973032 0.15663466 0.37333828]\n [-0.40141717 -1.24446 0.30611908]]",
|
65 |
+
"observation": "[[ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]]"
|
66 |
+
},
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'collections.OrderedDict'>",
|
73 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADsnYPQUhGT6d5Rk+tkrLPGq/L71TLIo+TgKoOxDo3b01KGI+yk4Nvtp3Rj1d8Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
74 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
75 |
+
"desired_goal": "[[ 0.10585223 0.14954002 0.15028997]\n [ 0.0248159 -0.04290716 0.26986942]\n [ 0.00512723 -0.10835278 0.2208565 ]\n [-0.13799587 0.04845414 0.18255754]]",
|
76 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
77 |
+
},
|
78 |
+
"_episode_num": 0,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.0,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ny0GafFM8CUhpRSlIwBbJRLMowBdJRHQKgVcemvW6N1fZQoaAZoCWgPQwjsUbgehQs6wJSGlFKUaBVLMmgWR0CoFR1Da4+bdX2UKGgGaAloD0MIYk1lUdhhOMCUhpRSlGgVSzJoFkdAqBTKQtBfKXV9lChoBmgJaA9DCFmis8wiwDjAlIaUUpRoFUsyaBZHQKgUeHgxagV1fZQoaAZoCWgPQwiMn8a9+dk4wJSGlFKUaBVLMmgWR0CoFpCm2sq8dX2UKGgGaAloD0MI/OO9amUaKsCUhpRSlGgVSzJoFkdAqBY7/82rGXV9lChoBmgJaA9DCAby7PKti0fAlIaUUpRoFUsyaBZHQKgV6SdOIqN1fZQoaAZoCWgPQwhIwVPIlboqwJSGlFKUaBVLMmgWR0CoFZdvS+g2dX2UKGgGaAloD0MIJ2w/GeNDOMCUhpRSlGgVSzJoFkdAqBeqm4y44XV9lChoBmgJaA9DCEpfCDnvCzDAlIaUUpRoFUsyaBZHQKgXVgF5fMR1fZQoaAZoCWgPQwgrEhPU8PUwwJSGlFKUaBVLMmgWR0CoFwMYl6Z6dX2UKGgGaAloD0MII7vSMlJrNsCUhpRSlGgVSzJoFkdAqBaxY3eenXV9lChoBmgJaA9DCOzctBmnGTrAlIaUUpRoFUsyaBZHQKgYwoo/iYN1fZQoaAZoCWgPQwj3kzE+zA4twJSGlFKUaBVLMmgWR0CoGG3sw+MZdX2UKGgGaAloD0MIB0MdVrh3RsCUhpRSlGgVSzJoFkdAqBgbFbVz63V9lChoBmgJaA9DCDj1geSdsynAlIaUUpRoFUsyaBZHQKgXyWZZ0S11fZQoaAZoCWgPQwiNXaJ6a8QzwJSGlFKUaBVLMmgWR0CoGeenZTQ3dX2UKGgGaAloD0MIZyrEI/EOMMCUhpRSlGgVSzJoFkdAqBmTFVDKHXV9lChoBmgJaA9DCHPbvkf9MUbAlIaUUpRoFUsyaBZHQKgZQC8OCoV1fZQoaAZoCWgPQwhwzojS3mBHwJSGlFKUaBVLMmgWR0CoGO5+QU5/dX2UKGgGaAloD0MI8djPYinqRsCUhpRSlGgVSzJoFkdAqBsLeQ+2VnV9lChoBmgJaA9DCOuQm+EGqkXAlIaUUpRoFUsyaBZHQKgatw+dK/V1fZQoaAZoCWgPQwhIp658lp85wJSGlFKUaBVLMmgWR0CoGmQkgOjJdX2UKGgGaAloD0MIEOz4LxD4N8CUhpRSlGgVSzJoFkdAqBoSeqaPS3V9lChoBmgJaA9DCHrFU480wDDAlIaUUpRoFUsyaBZHQKgcN3xFy7x1fZQoaAZoCWgPQwjqJFtdTqtGwJSGlFKUaBVLMmgWR0CoG+LoOhCddX2UKGgGaAloD0MIg94bQwCoKcCUhpRSlGgVSzJoFkdAqBuP/o7muHV9lChoBmgJaA9DCJilnZrLUTPAlIaUUpRoFUsyaBZHQKgbPm7rcCZ1fZQoaAZoCWgPQwh5AmGnWNk5wJSGlFKUaBVLMmgWR0CoHUtzKcNIdX2UKGgGaAloD0MIdVq3Qe03R8CUhpRSlGgVSzJoFkdAqBz25H3DenV9lChoBmgJaA9DCNGwGHWtcTPAlIaUUpRoFUsyaBZHQKgco+yquKZ1fZQoaAZoCWgPQwjKNJpcjEE1wJSGlFKUaBVLMmgWR0CoHFIpYs/ZdX2UKGgGaAloD0MIW1653jYfMsCUhpRSlGgVSzJoFkdAqB5hqEeyRnV9lChoBmgJaA9DCB0c7E0MVTfAlIaUUpRoFUsyaBZHQKgeDRWtEG91fZQoaAZoCWgPQwjQDriumC01wJSGlFKUaBVLMmgWR0CoHbomXw9adX2UKGgGaAloD0MIdVd2weA6M8CUhpRSlGgVSzJoFkdAqB1ohB7eEnV9lChoBmgJaA9DCGuBPSZSFkjAlIaUUpRoFUsyaBZHQKgfgr9VFQV1fZQoaAZoCWgPQwjqlEc3wr4wwJSGlFKUaBVLMmgWR0CoHy47ihnKdX2UKGgGaAloD0MIKbAApgzaRsCUhpRSlGgVSzJoFkdAqB7bUXpGF3V9lChoBmgJaA9DCGBzDp4JvSrAlIaUUpRoFUsyaBZHQKgeibF0gbJ1fZQoaAZoCWgPQwjw+PauQaM4wJSGlFKUaBVLMmgWR0CoIJg9vCMxdX2UKGgGaAloD0MIIHwo0ZJXMcCUhpRSlGgVSzJoFkdAqCBDoEB8yHV9lChoBmgJaA9DCEYL0LaaLTjAlIaUUpRoFUsyaBZHQKgf8KJl8PZ1fZQoaAZoCWgPQwgQr+sX7Ko3wJSGlFKUaBVLMmgWR0CoH570OEuhdX2UKGgGaAloD0MIOUIG8uzmRcCUhpRSlGgVSzJoFkdAqCI6M3qA0HV9lChoBmgJaA9DCAh3Z+22kzHAlIaUUpRoFUsyaBZHQKgh5mOEM9d1fZQoaAZoCWgPQwj/HydMGGE7wJSGlFKUaBVLMmgWR0CoIZQ++ueSdX2UKGgGaAloD0MI/5O/e0ehOMCUhpRSlGgVSzJoFkdAqCFDVjI7vHV9lChoBmgJaA9DCBIUP8bcZTPAlIaUUpRoFUsyaBZHQKgkDO1v2oN1fZQoaAZoCWgPQwid9SnHZNE3wJSGlFKUaBVLMmgWR0CoI7k/bCaadX2UKGgGaAloD0MIZ4F2hxQvN8CUhpRSlGgVSzJoFkdAqCNnHWBjF3V9lChoBmgJaA9DCMQ/bOnRmDfAlIaUUpRoFUsyaBZHQKgjFmlqJuV1fZQoaAZoCWgPQwgLQQ5KmL0xwJSGlFKUaBVLMmgWR0CoJdwlruYydX2UKGgGaAloD0MIoKnXLQLDOMCUhpRSlGgVSzJoFkdAqCWIe/5+IHV9lChoBmgJaA9DCLmq7LsisDHAlIaUUpRoFUsyaBZHQKglNnwob4t1fZQoaAZoCWgPQwhEhlW8kY03wJSGlFKUaBVLMmgWR0CoJOWQwK0EdX2UKGgGaAloD0MI8IrgfyvFNsCUhpRSlGgVSzJoFkdAqCe6pm29c3V9lChoBmgJaA9DCGpLHeT1GCvAlIaUUpRoFUsyaBZHQKgnZwEyLyd1fZQoaAZoCWgPQwhYycfuAvk1wJSGlFKUaBVLMmgWR0CoJxUUXYUWdX2UKGgGaAloD0MInStKCcH6OcCUhpRSlGgVSzJoFkdAqCbEXxe9jHV9lChoBmgJaA9DCE6XxcTmIzrAlIaUUpRoFUsyaBZHQKgppW9US7J1fZQoaAZoCWgPQwiIghlTsJ4wwJSGlFKUaBVLMmgWR0CoKVHOKO1fdX2UKGgGaAloD0MIOX6oNGKkRsCUhpRSlGgVSzJoFkdAqCj/5i3G43V9lChoBmgJaA9DCAthNZawxi/AlIaUUpRoFUsyaBZHQKgory1/lQx1fZQoaAZoCWgPQwjAywwbZftFwJSGlFKUaBVLMmgWR0CoK0hV2icodX2UKGgGaAloD0MIDw2LUdfiM8CUhpRSlGgVSzJoFkdAqCrzwc5sCXV9lChoBmgJaA9DCHvBpzl5GTXAlIaUUpRoFUsyaBZHQKgqoN0eU6h1fZQoaAZoCWgPQwhinSrfM8IywJSGlFKUaBVLMmgWR0CoKk8ifQKKdX2UKGgGaAloD0MIf8LZrWViOMCUhpRSlGgVSzJoFkdAqCxc3XI2fnV9lChoBmgJaA9DCDdV98jmQjbAlIaUUpRoFUsyaBZHQKgsCNQ0oBt1fZQoaAZoCWgPQwifPCzUmso0wJSGlFKUaBVLMmgWR0CoK7aUA1ejdX2UKGgGaAloD0MIBvcDHhhiR8CUhpRSlGgVSzJoFkdAqCtldxAB1nV9lChoBmgJaA9DCNC1L6AXVjHAlIaUUpRoFUsyaBZHQKgte2SdOIt1fZQoaAZoCWgPQwiPHVTiOpYxwJSGlFKUaBVLMmgWR0CoLSa+evpydX2UKGgGaAloD0MIXKrSFteYMMCUhpRSlGgVSzJoFkdAqCzTujRD1HV9lChoBmgJaA9DCMbhzK/mwEfAlIaUUpRoFUsyaBZHQKgsgfeUILR1fZQoaAZoCWgPQwgPtAJDVvcwwJSGlFKUaBVLMmgWR0CoLwGWldkbdX2UKGgGaAloD0MIOIO/X8yeL8CUhpRSlGgVSzJoFkdAqC6tyHVPN3V9lChoBmgJaA9DCI1F09nJZDjAlIaUUpRoFUsyaBZHQKguW6nR9gF1fZQoaAZoCWgPQwjx9iAE5Gc4wJSGlFKUaBVLMmgWR0CoLgrnLaEjdX2UKGgGaAloD0MID5iHTPmsR8CUhpRSlGgVSzJoFkdAqDDWC04R3HV9lChoBmgJaA9DCBUZHZCEkTjAlIaUUpRoFUsyaBZHQKgwgkona391fZQoaAZoCWgPQwh4fHvXoHMwwJSGlFKUaBVLMmgWR0CoMDAfuCwsdX2UKGgGaAloD0MIlE25wrv0K8CUhpRSlGgVSzJoFkdAqC/fPC2tuHV9lChoBmgJaA9DCKiN6nQgMznAlIaUUpRoFUsyaBZHQKgyqt3fQ8h1fZQoaAZoCWgPQwi0ykxp/edIwJSGlFKUaBVLMmgWR0CoMlc7hegMdX2UKGgGaAloD0MIPKWD9X++N8CUhpRSlGgVSzJoFkdAqDIFkjHGTHV9lChoBmgJaA9DCO4HPDCAPDPAlIaUUpRoFUsyaBZHQKgxtOcDr7h1fZQoaAZoCWgPQwjEJjJzgfstwJSGlFKUaBVLMmgWR0CoNIWuX/o8dX2UKGgGaAloD0MI4c/wZg1yMsCUhpRSlGgVSzJoFkdAqDQyLQ5WBHV9lChoBmgJaA9DCNGSx9PyP0fAlIaUUpRoFUsyaBZHQKgz4EEkjX51fZQoaAZoCWgPQwi2SxsOS3sywJSGlFKUaBVLMmgWR0CoM4+A3DNydX2UKGgGaAloD0MINUI/U6+VScCUhpRSlGgVSzJoFkdAqDZkWhysCHV9lChoBmgJaA9DCI/8wcBzlzTAlIaUUpRoFUsyaBZHQKg2EMBIWgx1fZQoaAZoCWgPQwgVcqWeBYk3wJSGlFKUaBVLMmgWR0CoNb62OQyRdX2UKGgGaAloD0MIxhft8ULGNMCUhpRSlGgVSzJoFkdAqDVuA7Ppp3V9lChoBmgJaA9DCB2wq8lTukjAlIaUUpRoFUsyaBZHQKg3+WsRxtJ1fZQoaAZoCWgPQwgfSN45lFkuwJSGlFKUaBVLMmgWR0CoN6TC+De1dX2UKGgGaAloD0MIeeblsPseLMCUhpRSlGgVSzJoFkdAqDdRxrBTGnV9lChoBmgJaA9DCJOoF3ya8znAlIaUUpRoFUsyaBZHQKg3AAG0NSZ1ZS4="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 50000,
|
91 |
+
"n_steps": 5,
|
92 |
+
"gamma": 0.95,
|
93 |
+
"gae_lambda": 1.0,
|
94 |
+
"ent_coef": 0.0,
|
95 |
+
"vf_coef": 0.5,
|
96 |
+
"max_grad_norm": 0.5,
|
97 |
+
"normalize_advantage": false
|
98 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d207b4d2cf706467055ef161203c62ccdebc24e9c8227de1b27cfa21b44acf9f
|
3 |
+
size 23755
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c943fb18102e2f67558253c539a4a0bb7d4109f2991e31384b96047be60d4383
|
3 |
+
size 24779
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7effd6062f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7effd605dd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677618127043242573, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KCZP58p0r8u20i+r0VyP9ZRUj9yyl6/3egYP9ZkID4yJr8+jYbNvndKn7+ku5w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]]", "desired_goal": "[[ 1.2002201 -1.6418952 -0.1961486 ]\n [ 0.9463758 0.8215612 -0.8702766 ]\n [ 0.5973032 0.15663466 0.37333828]\n [-0.40141717 -1.24446 0.30611908]]", "observation": "[[ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADsnYPQUhGT6d5Rk+tkrLPGq/L71TLIo+TgKoOxDo3b01KGI+yk4Nvtp3Rj1d8Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10585223 0.14954002 0.15028997]\n [ 0.0248159 -0.04290716 0.26986942]\n [ 0.00512723 -0.10835278 0.2208565 ]\n [-0.13799587 0.04845414 0.18255754]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ny0GafFM8CUhpRSlIwBbJRLMowBdJRHQKgVcemvW6N1fZQoaAZoCWgPQwjsUbgehQs6wJSGlFKUaBVLMmgWR0CoFR1Da4+bdX2UKGgGaAloD0MIYk1lUdhhOMCUhpRSlGgVSzJoFkdAqBTKQtBfKXV9lChoBmgJaA9DCFmis8wiwDjAlIaUUpRoFUsyaBZHQKgUeHgxagV1fZQoaAZoCWgPQwiMn8a9+dk4wJSGlFKUaBVLMmgWR0CoFpCm2sq8dX2UKGgGaAloD0MI/OO9amUaKsCUhpRSlGgVSzJoFkdAqBY7/82rGXV9lChoBmgJaA9DCAby7PKti0fAlIaUUpRoFUsyaBZHQKgV6SdOIqN1fZQoaAZoCWgPQwhIwVPIlboqwJSGlFKUaBVLMmgWR0CoFZdvS+g2dX2UKGgGaAloD0MIJ2w/GeNDOMCUhpRSlGgVSzJoFkdAqBeqm4y44XV9lChoBmgJaA9DCEpfCDnvCzDAlIaUUpRoFUsyaBZHQKgXVgF5fMR1fZQoaAZoCWgPQwgrEhPU8PUwwJSGlFKUaBVLMmgWR0CoFwMYl6Z6dX2UKGgGaAloD0MII7vSMlJrNsCUhpRSlGgVSzJoFkdAqBaxY3eenXV9lChoBmgJaA9DCOzctBmnGTrAlIaUUpRoFUsyaBZHQKgYwoo/iYN1fZQoaAZoCWgPQwj3kzE+zA4twJSGlFKUaBVLMmgWR0CoGG3sw+MZdX2UKGgGaAloD0MIB0MdVrh3RsCUhpRSlGgVSzJoFkdAqBgbFbVz63V9lChoBmgJaA9DCDj1geSdsynAlIaUUpRoFUsyaBZHQKgXyWZZ0S11fZQoaAZoCWgPQwiNXaJ6a8QzwJSGlFKUaBVLMmgWR0CoGeenZTQ3dX2UKGgGaAloD0MIZyrEI/EOMMCUhpRSlGgVSzJoFkdAqBmTFVDKHXV9lChoBmgJaA9DCHPbvkf9MUbAlIaUUpRoFUsyaBZHQKgZQC8OCoV1fZQoaAZoCWgPQwhwzojS3mBHwJSGlFKUaBVLMmgWR0CoGO5+QU5/dX2UKGgGaAloD0MI8djPYinqRsCUhpRSlGgVSzJoFkdAqBsLeQ+2VnV9lChoBmgJaA9DCOuQm+EGqkXAlIaUUpRoFUsyaBZHQKgatw+dK/V1fZQoaAZoCWgPQwhIp658lp85wJSGlFKUaBVLMmgWR0CoGmQkgOjJdX2UKGgGaAloD0MIEOz4LxD4N8CUhpRSlGgVSzJoFkdAqBoSeqaPS3V9lChoBmgJaA9DCHrFU480wDDAlIaUUpRoFUsyaBZHQKgcN3xFy7x1fZQoaAZoCWgPQwjqJFtdTqtGwJSGlFKUaBVLMmgWR0CoG+LoOhCddX2UKGgGaAloD0MIg94bQwCoKcCUhpRSlGgVSzJoFkdAqBuP/o7muHV9lChoBmgJaA9DCJilnZrLUTPAlIaUUpRoFUsyaBZHQKgbPm7rcCZ1fZQoaAZoCWgPQwh5AmGnWNk5wJSGlFKUaBVLMmgWR0CoHUtzKcNIdX2UKGgGaAloD0MIdVq3Qe03R8CUhpRSlGgVSzJoFkdAqBz25H3DenV9lChoBmgJaA9DCNGwGHWtcTPAlIaUUpRoFUsyaBZHQKgco+yquKZ1fZQoaAZoCWgPQwjKNJpcjEE1wJSGlFKUaBVLMmgWR0CoHFIpYs/ZdX2UKGgGaAloD0MIW1653jYfMsCUhpRSlGgVSzJoFkdAqB5hqEeyRnV9lChoBmgJaA9DCB0c7E0MVTfAlIaUUpRoFUsyaBZHQKgeDRWtEG91fZQoaAZoCWgPQwjQDriumC01wJSGlFKUaBVLMmgWR0CoHbomXw9adX2UKGgGaAloD0MIdVd2weA6M8CUhpRSlGgVSzJoFkdAqB1ohB7eEnV9lChoBmgJaA9DCGuBPSZSFkjAlIaUUpRoFUsyaBZHQKgfgr9VFQV1fZQoaAZoCWgPQwjqlEc3wr4wwJSGlFKUaBVLMmgWR0CoHy47ihnKdX2UKGgGaAloD0MIKbAApgzaRsCUhpRSlGgVSzJoFkdAqB7bUXpGF3V9lChoBmgJaA9DCGBzDp4JvSrAlIaUUpRoFUsyaBZHQKgeibF0gbJ1fZQoaAZoCWgPQwjw+PauQaM4wJSGlFKUaBVLMmgWR0CoIJg9vCMxdX2UKGgGaAloD0MIIHwo0ZJXMcCUhpRSlGgVSzJoFkdAqCBDoEB8yHV9lChoBmgJaA9DCEYL0LaaLTjAlIaUUpRoFUsyaBZHQKgf8KJl8PZ1fZQoaAZoCWgPQwgQr+sX7Ko3wJSGlFKUaBVLMmgWR0CoH570OEuhdX2UKGgGaAloD0MIOUIG8uzmRcCUhpRSlGgVSzJoFkdAqCI6M3qA0HV9lChoBmgJaA9DCAh3Z+22kzHAlIaUUpRoFUsyaBZHQKgh5mOEM9d1fZQoaAZoCWgPQwj/HydMGGE7wJSGlFKUaBVLMmgWR0CoIZQ++ueSdX2UKGgGaAloD0MI/5O/e0ehOMCUhpRSlGgVSzJoFkdAqCFDVjI7vHV9lChoBmgJaA9DCBIUP8bcZTPAlIaUUpRoFUsyaBZHQKgkDO1v2oN1fZQoaAZoCWgPQwid9SnHZNE3wJSGlFKUaBVLMmgWR0CoI7k/bCaadX2UKGgGaAloD0MIZ4F2hxQvN8CUhpRSlGgVSzJoFkdAqCNnHWBjF3V9lChoBmgJaA9DCMQ/bOnRmDfAlIaUUpRoFUsyaBZHQKgjFmlqJuV1fZQoaAZoCWgPQwgLQQ5KmL0xwJSGlFKUaBVLMmgWR0CoJdwlruYydX2UKGgGaAloD0MIoKnXLQLDOMCUhpRSlGgVSzJoFkdAqCWIe/5+IHV9lChoBmgJaA9DCLmq7LsisDHAlIaUUpRoFUsyaBZHQKglNnwob4t1fZQoaAZoCWgPQwhEhlW8kY03wJSGlFKUaBVLMmgWR0CoJOWQwK0EdX2UKGgGaAloD0MI8IrgfyvFNsCUhpRSlGgVSzJoFkdAqCe6pm29c3V9lChoBmgJaA9DCGpLHeT1GCvAlIaUUpRoFUsyaBZHQKgnZwEyLyd1fZQoaAZoCWgPQwhYycfuAvk1wJSGlFKUaBVLMmgWR0CoJxUUXYUWdX2UKGgGaAloD0MInStKCcH6OcCUhpRSlGgVSzJoFkdAqCbEXxe9jHV9lChoBmgJaA9DCE6XxcTmIzrAlIaUUpRoFUsyaBZHQKgppW9US7J1fZQoaAZoCWgPQwiIghlTsJ4wwJSGlFKUaBVLMmgWR0CoKVHOKO1fdX2UKGgGaAloD0MIOX6oNGKkRsCUhpRSlGgVSzJoFkdAqCj/5i3G43V9lChoBmgJaA9DCAthNZawxi/AlIaUUpRoFUsyaBZHQKgory1/lQx1fZQoaAZoCWgPQwjAywwbZftFwJSGlFKUaBVLMmgWR0CoK0hV2icodX2UKGgGaAloD0MIDw2LUdfiM8CUhpRSlGgVSzJoFkdAqCrzwc5sCXV9lChoBmgJaA9DCHvBpzl5GTXAlIaUUpRoFUsyaBZHQKgqoN0eU6h1fZQoaAZoCWgPQwhinSrfM8IywJSGlFKUaBVLMmgWR0CoKk8ifQKKdX2UKGgGaAloD0MIf8LZrWViOMCUhpRSlGgVSzJoFkdAqCxc3XI2fnV9lChoBmgJaA9DCDdV98jmQjbAlIaUUpRoFUsyaBZHQKgsCNQ0oBt1fZQoaAZoCWgPQwifPCzUmso0wJSGlFKUaBVLMmgWR0CoK7aUA1ejdX2UKGgGaAloD0MIBvcDHhhiR8CUhpRSlGgVSzJoFkdAqCtldxAB1nV9lChoBmgJaA9DCNC1L6AXVjHAlIaUUpRoFUsyaBZHQKgte2SdOIt1fZQoaAZoCWgPQwiPHVTiOpYxwJSGlFKUaBVLMmgWR0CoLSa+evpydX2UKGgGaAloD0MIXKrSFteYMMCUhpRSlGgVSzJoFkdAqCzTujRD1HV9lChoBmgJaA9DCMbhzK/mwEfAlIaUUpRoFUsyaBZHQKgsgfeUILR1fZQoaAZoCWgPQwgPtAJDVvcwwJSGlFKUaBVLMmgWR0CoLwGWldkbdX2UKGgGaAloD0MIOIO/X8yeL8CUhpRSlGgVSzJoFkdAqC6tyHVPN3V9lChoBmgJaA9DCI1F09nJZDjAlIaUUpRoFUsyaBZHQKguW6nR9gF1fZQoaAZoCWgPQwjx9iAE5Gc4wJSGlFKUaBVLMmgWR0CoLgrnLaEjdX2UKGgGaAloD0MID5iHTPmsR8CUhpRSlGgVSzJoFkdAqDDWC04R3HV9lChoBmgJaA9DCBUZHZCEkTjAlIaUUpRoFUsyaBZHQKgwgkona391fZQoaAZoCWgPQwh4fHvXoHMwwJSGlFKUaBVLMmgWR0CoMDAfuCwsdX2UKGgGaAloD0MIlE25wrv0K8CUhpRSlGgVSzJoFkdAqC/fPC2tuHV9lChoBmgJaA9DCKiN6nQgMznAlIaUUpRoFUsyaBZHQKgyqt3fQ8h1fZQoaAZoCWgPQwi0ykxp/edIwJSGlFKUaBVLMmgWR0CoMlc7hegMdX2UKGgGaAloD0MIPKWD9X++N8CUhpRSlGgVSzJoFkdAqDIFkjHGTHV9lChoBmgJaA9DCO4HPDCAPDPAlIaUUpRoFUsyaBZHQKgxtOcDr7h1fZQoaAZoCWgPQwjEJjJzgfstwJSGlFKUaBVLMmgWR0CoNIWuX/o8dX2UKGgGaAloD0MI4c/wZg1yMsCUhpRSlGgVSzJoFkdAqDQyLQ5WBHV9lChoBmgJaA9DCNGSx9PyP0fAlIaUUpRoFUsyaBZHQKgz4EEkjX51fZQoaAZoCWgPQwi2SxsOS3sywJSGlFKUaBVLMmgWR0CoM4+A3DNydX2UKGgGaAloD0MINUI/U6+VScCUhpRSlGgVSzJoFkdAqDZkWhysCHV9lChoBmgJaA9DCI/8wcBzlzTAlIaUUpRoFUsyaBZHQKg2EMBIWgx1fZQoaAZoCWgPQwgVcqWeBYk3wJSGlFKUaBVLMmgWR0CoNb62OQyRdX2UKGgGaAloD0MIxhft8ULGNMCUhpRSlGgVSzJoFkdAqDVuA7Ppp3V9lChoBmgJaA9DCB2wq8lTukjAlIaUUpRoFUsyaBZHQKg3+WsRxtJ1fZQoaAZoCWgPQwgfSN45lFkuwJSGlFKUaBVLMmgWR0CoN6TC+De1dX2UKGgGaAloD0MIeeblsPseLMCUhpRSlGgVSzJoFkdAqDdRxrBTGnV9lChoBmgJaA9DCJOoF3ya8znAlIaUUpRoFUsyaBZHQKg3AAG0NSZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (541 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -22.609167648106812, "std_reward": 2.7408506234224275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T21:53:51.913462"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d1a303421664a49a741f43c3556cac5c310c442f37d21335ca7c05f186dc013
|
3 |
+
size 3056
|