Commit
·
6c6456b
1
Parent(s):
3495374
v1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-sr12022022.zip +3 -0
- ppo-LunarLander-v2-sr12022022/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-sr12022022/data +94 -0
- ppo-LunarLander-v2-sr12022022/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-sr12022022/policy.pth +3 -0
- ppo-LunarLander-v2-sr12022022/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-sr12022022/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 156.96 +/- 48.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f223f5c6940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f223f5c69d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f223f5c6a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f223f5c6af0>", "_build": "<function ActorCriticPolicy._build at 0x7f223f5c6b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f223f5c6c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f223f5c6ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f223f5c6d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f223f5c6dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f223f5c6e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f223f5c6ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f223f5c1900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669991723559451629, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGpPUr5Sle48rWwRO2x52LmoY4S+WNBcugAAgD8AAIA/ZuNoPQpHIblywOq7tw/GN4PmFzrFZCC3AACAPwAAgD869i8/7cTQPnZ+qr1+zam+homWPAIWdz0AAAAAAAAAAIbCTT7kd589uCr9vbYHkb4HNge+bz+yvQAAAAAAAAAAM1OuPI+aBro+/7M7OQjsNUO7K7sG0Nk0AACAPwAAgD8Nuj8+xaX8PG3mYjm6Wy84A92NPqiUu7gAAIA/AACAP41R0j2kQDq5bonKu3n/1TXI9m26NjBFtQAAgD8AAIA/AFOVvKTXeLsDFYk8WTKEPHMbpbwNa2A9AACAPwAAgD+aVYE79qgSulN/pruo0QA5cBcKu+QAMzoAAIA/AACAP43nhT5NlC0/ahq2vYRixr5djmw9oWkGPQAAAAAAAAAAJg2nvkZOHz8xDga9TViXvn/QIL5znyI+AAAAAAAAAAAAzUw9w7FQumX+XjtsvLw8+N8pOoqVor0AAIA/AACAP03BPb44tcW7gzlpu1fKkTypah09+oMEuwAAgD8AAIA/3UyuPnNczz5LSPW8ULBUvk9Xez2IKKg9AAAAAAAAAADmtJ++1UBQP0wnHr7T2aK+fNUDvipbCj4AAAAAAAAAAMBZMj5UuIS8rTpju6mJFzoY1vC9E5y+OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAfxTqkSXTUCUhpRSlIwBbJRN6AOMAXSUR0CCxBGTcIqtdX2UKGgGaAloD0MI+MH51DH5YECUhpRSlGgVTegDaBZHQILHVwNsnAt1fZQoaAZoCWgPQwindRvUfuVaQJSGlFKUaBVN6ANoFkdAgs8XqRlpXnV9lChoBmgJaA9DCEG4Agr1ADtAlIaUUpRoFU2aA2gWR0CC0arz5GjLdX2UKGgGaAloD0MIMucZ+5IZW0CUhpRSlGgVTegDaBZHQILtnX7Lt/p1fZQoaAZoCWgPQwgk8Ief/z5cQJSGlFKUaBVN6ANoFkdAgu51IZqEe3V9lChoBmgJaA9DCLUX0XZMD2RAlIaUUpRoFU3oA2gWR0CC7vSGahHtdX2UKGgGaAloD0MIBwq8k0/HXkCUhpRSlGgVTegDaBZHQIMmt/z8P4F1fZQoaAZoCWgPQwgMsfojDEZXQJSGlFKUaBVN6ANoFkdAgz5IpYs/ZHV9lChoBmgJaA9DCB+g+3JmRF5AlIaUUpRoFU3oA2gWR0CDQU1c+qzadX2UKGgGaAloD0MI7wIlBRZFWkCUhpRSlGgVTegDaBZHQINDXyAhB7h1fZQoaAZoCWgPQwg+srlqnoZgQJSGlFKUaBVN6ANoFkdAg0T642CNCXV9lChoBmgJaA9DCKbW+412tkJAlIaUUpRoFUvraBZHQINJqXhOxjd1fZQoaAZoCWgPQwgJ/OHnv6ZaQJSGlFKUaBVN6ANoFkdAg0++e4Cp33V9lChoBmgJaA9DCLVRnQ5kJFlAlIaUUpRoFU3oA2gWR0CDcdfE4vOAdX2UKGgGaAloD0MIR3GOOjpjXkCUhpRSlGgVTegDaBZHQIN6g0GeMAF1fZQoaAZoCWgPQwgB/FOqRJteQJSGlFKUaBVN6ANoFkdAg4K8qWkadnV9lChoBmgJaA9DCG4ZcJaSKmFAlIaUUpRoFU3oA2gWR0CDgyFpwjt5dX2UKGgGaAloD0MI7N6KxAQTXECUhpRSlGgVTegDaBZHQIOG7fHggox1fZQoaAZoCWgPQwh8mL1sO01aQJSGlFKUaBVN6ANoFkdAg41Tx5LRKHV9lChoBmgJaA9DCE0s8BXdp19AlIaUUpRoFU3oA2gWR0CDj1DCxeLOdX2UKGgGaAloD0MIWg9fJopEW0CUhpRSlGgVTegDaBZHQIOlOEh7mdR1fZQoaAZoCWgPQwi9cr1tpg9XQJSGlFKUaBVN6ANoFkdAg6Yh8QZn+XV9lChoBmgJaA9DCPzG155ZYV9AlIaUUpRoFU3oA2gWR0CDpqOIZZSvdX2UKGgGaAloD0MI6Sec3VrOQ0CUhpRSlGgVS/VoFkdAg6cTI3irDXV9lChoBmgJaA9DCMoV3uUiHhJAlIaUUpRoFU0rAWgWR0CDp4/i5uqFdX2UKGgGaAloD0MI6KOMuAA0FcCUhpRSlGgVS/JoFkdAg6mqRU3n6nV9lChoBmgJaA9DCEqZ1NAG6lhAlIaUUpRoFU3oA2gWR0CD+FsLORkmdX2UKGgGaAloD0MIEMmQY2tDYUCUhpRSlGgVTegDaBZHQIP7sNYr8SB1fZQoaAZoCWgPQwilL4Scd5lgQJSGlFKUaBVN6ANoFkdAg/3Q482aUnV9lChoBmgJaA9DCCsVVFT9JF5AlIaUUpRoFU3oA2gWR0CD/5xtpEhJdX2UKGgGaAloD0MIezApPj4OUkCUhpRSlGgVTegDaBZHQIQEs6zVtoB1fZQoaAZoCWgPQwiP4EbKFj5kQJSGlFKUaBVN6ANoFkdAhAq+AVfu1HV9lChoBmgJaA9DCKMBvAUScFtAlIaUUpRoFU3oA2gWR0CEKyu4gA6udX2UKGgGaAloD0MIvXMoQ1VxX0CUhpRSlGgVTegDaBZHQIQ6Y+IMz/J1fZQoaAZoCWgPQwgXu31WmbpfQJSGlFKUaBVN6ANoFkdAhET/RmbsnnV9lChoBmgJaA9DCNkh/mHLSmBAlIaUUpRoFU3oA2gWR0CERxndweeWdX2UKGgGaAloD0MIg2qDE1F4ZUCUhpRSlGgVTV4CaBZHQIRT5GBnSOR1fZQoaAZoCWgPQwhy3CkdLJNjQJSGlFKUaBVN6ANoFkdAhFwdZzPrwHV9lChoBmgJaA9DCHJuE+6VHF5AlIaUUpRoFU3oA2gWR0CEXPWPLgXNdX2UKGgGaAloD0MIIbHdPUDKXkCUhpRSlGgVTegDaBZHQIRdbGHYYix1fZQoaAZoCWgPQwiNtFTejjxcQJSGlFKUaBVN6ANoFkdAhF3KzRhMJ3V9lChoBmgJaA9DCJ7vp8ZLx2BAlIaUUpRoFU3oA2gWR0CEXislsxfwdX2UKGgGaAloD0MIWaMeolG4ZECUhpRSlGgVTegDaBZHQIRfwmCyyD91fZQoaAZoCWgPQwiCjla1pKdNQJSGlFKUaBVL22gWR0CEml1EE1VHdX2UKGgGaAloD0MIkga3tYXNX0CUhpRSlGgVTegDaBZHQISjgJHAh0R1fZQoaAZoCWgPQwikVMIT+ixgQJSGlFKUaBVN6ANoFkdAhKYLZamoBXV9lChoBmgJaA9DCCRCI9i4dFxAlIaUUpRoFU3oA2gWR0CEqV2TPjXGdX2UKGgGaAloD0MIG76FdeMRXUCUhpRSlGgVTegDaBZHQISt3JFLFn91fZQoaAZoCWgPQwh0stR6v8dcQJSGlFKUaBVN6ANoFkdAhLOArH2h7HV9lChoBmgJaA9DCMb83NAUx2FAlIaUUpRoFU3oA2gWR0CE1YbXpW3jdX2UKGgGaAloD0MISb2nctr4XECUhpRSlGgVTegDaBZHQITmKidrftR1fZQoaAZoCWgPQwhZ/RGGgSlgQJSGlFKUaBVN6ANoFkdAhPGqjSG8EnV9lChoBmgJaA9DCKYr2EY8GmFAlIaUUpRoFU3oA2gWR0CE9AUTtb9qdX2UKGgGaAloD0MIPulEgqlaWkCUhpRSlGgVTegDaBZHQIUC/GOuJUJ1fZQoaAZoCWgPQwi/fR04Z6taQJSGlFKUaBVN6ANoFkdAhQyX2ugYg3V9lChoBmgJaA9DCEgXm1YKX1pAlIaUUpRoFU3oA2gWR0CFDZWNFSbZdX2UKGgGaAloD0MIfA4sR0g/YECUhpRSlGgVTegDaBZHQIUOI9s7+1l1fZQoaAZoCWgPQwjrO78oQSVgQJSGlFKUaBVN6ANoFkdAhQ6VdxAB1nV9lChoBmgJaA9DCDuqmiDq7lpAlIaUUpRoFU3oA2gWR0CFERe2NNrTdX2UKGgGaAloD0MIIqZEEr2EPUCUhpRSlGgVTSUBaBZHQIUUGP/7zkJ1fZQoaAZoCWgPQwhX0R+aeZILQJSGlFKUaBVL9GgWR0CFFloxHoX9dX2UKGgGaAloD0MIGeQuwpTgZECUhpRSlGgVTe8CaBZHQIUYeb5M10l1fZQoaAZoCWgPQwgvM2yU9VlOQJSGlFKUaBVN6ANoFkdAhU3PBBRht3V9lChoBmgJaA9DCIhKI2Z2xGBAlIaUUpRoFU3oA2gWR0CFV3Nqxkd4dX2UKGgGaAloD0MIqtTsgVagO0CUhpRSlGgVS95oFkdAhVm5J04io3V9lChoBmgJaA9DCHbhB+dTPmRAlIaUUpRoFU3oA2gWR0CFWgSIxgy/dX2UKGgGaAloD0MIlgSoqWW3YUCUhpRSlGgVTegDaBZHQIViGMwUQCl1fZQoaAZoCWgPQwimRuhn6s9VQJSGlFKUaBVN6ANoFkdAhWgp6yB063V9lChoBmgJaA9DCCI4LuOm0jVAlIaUUpRoFUvwaBZHQIWBXE87p3Z1fZQoaAZoCWgPQwjJHMu76qFZQJSGlFKUaBVN6ANoFkdAhYe6uGKyfXV9lChoBmgJaA9DCI24ADRKgFlAlIaUUpRoFU3oA2gWR0CFodiEQGwBdX2UKGgGaAloD0MIuRtEa0X7NECUhpRSlGgVS95oFkdAhaez3AVO9HV9lChoBmgJaA9DCNhGPNnNJFxAlIaUUpRoFU3oA2gWR0CFrxg5zYEodX2UKGgGaAloD0MInwWhvI/CYkCUhpRSlGgVTegDaBZHQIW35mPHT7V1fZQoaAZoCWgPQwiHvyZr1KZgQJSGlFKUaBVN6ANoFkdAhbi8c+7lJnV9lChoBmgJaA9DCA6HpYEf1WJAlIaUUpRoFU3oA2gWR0CFuUB+4LCvdX2UKGgGaAloD0MIOllqvV+FYECUhpRSlGgVTegDaBZHQIW5pRl6JIl1fZQoaAZoCWgPQwhs7X2qCpViQJSGlFKUaBVN6ANoFkdAhbvgP3BYWHV9lChoBmgJaA9DCDyh15/ES1ZAlIaUUpRoFU3oA2gWR0CFvm6dUbT+dX2UKGgGaAloD0MIlFD6QkjfY0CUhpRSlGgVTegDaBZHQIXATGNrCWN1fZQoaAZoCWgPQwiQ3Jp0W/RCQJSGlFKUaBVL52gWR0CF9YJ0nw5OdX2UKGgGaAloD0MI6WSp9X7XMkCUhpRSlGgVS9toFkdAhfWn62v0RXV9lChoBmgJaA9DCPDErBdDqlVAlIaUUpRoFU3oA2gWR0CF9h1uivgWdX2UKGgGaAloD0MIg6RPq+h/X0CUhpRSlGgVTegDaBZHQIX+JcC5mRN1fZQoaAZoCWgPQwgbnfNTHB5fQJSGlFKUaBVN6ANoFkdAhgAmbb1yvXV9lChoBmgJaA9DCDIBv0aS7F5AlIaUUpRoFU3oA2gWR0CGAGhf0EowdX2UKGgGaAloD0MI7L5jeOz1XECUhpRSlGgVTegDaBZHQIYMuAoXsPd1fZQoaAZoCWgPQwhQjZduEiMPQJSGlFKUaBVL9GgWR0CGEgcJdB0IdX2UKGgGaAloD0MIELHBwkluNkCUhpRSlGgVS91oFkdAhhoKLjxTbXV9lChoBmgJaA9DCAwfEVMiyQ1AlIaUUpRoFUvdaBZHQIYc8qH446x1fZQoaAZoCWgPQwj2m4npQpFiQJSGlFKUaBVN6ANoFkdAhivI5PuXu3V9lChoBmgJaA9DCLFTrBqE8l9AlIaUUpRoFU3oA2gWR0CGTpM5fdAPdX2UKGgGaAloD0MIHlA25YqwZECUhpRSlGgVTegDaBZHQIZU+9nK4hF1fZQoaAZoCWgPQwhs7uh/ucxlQJSGlFKUaBVN6ANoFkdAhlyrT6SDAnV9lChoBmgJaA9DCJ2AJsKG0mFAlIaUUpRoFU3oA2gWR0CGZfRuTA32dX2UKGgGaAloD0MIs12hD5bqXECUhpRSlGgVTegDaBZHQIZmfC9AX2x1fZQoaAZoCWgPQwi9w+3QMENiQJSGlFKUaBVN6ANoFkdAhmmXxnWat3V9lChoBmgJaA9DCBcrajCNeWFAlIaUUpRoFU3oA2gWR0CGbGLiMo+fdX2UKGgGaAloD0MIT+YffRPrYUCUhpRSlGgVTegDaBZHQIZugp8WsRx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-sr12022022.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1f774b67c7a67c58a8697c70fa16714a2695cc5a21d0068ec542de5ec85e736
|
3 |
+
size 147136
|
ppo-LunarLander-v2-sr12022022/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-sr12022022/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f223f5c6940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f223f5c69d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f223f5c6a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f223f5c6af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f223f5c6b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f223f5c6c10>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f223f5c6ca0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f223f5c6d30>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f223f5c6dc0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f223f5c6e50>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f223f5c6ee0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f223f5c1900>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1669991723559451629,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGpPUr5Sle48rWwRO2x52LmoY4S+WNBcugAAgD8AAIA/ZuNoPQpHIblywOq7tw/GN4PmFzrFZCC3AACAPwAAgD869i8/7cTQPnZ+qr1+zam+homWPAIWdz0AAAAAAAAAAIbCTT7kd589uCr9vbYHkb4HNge+bz+yvQAAAAAAAAAAM1OuPI+aBro+/7M7OQjsNUO7K7sG0Nk0AACAPwAAgD8Nuj8+xaX8PG3mYjm6Wy84A92NPqiUu7gAAIA/AACAP41R0j2kQDq5bonKu3n/1TXI9m26NjBFtQAAgD8AAIA/AFOVvKTXeLsDFYk8WTKEPHMbpbwNa2A9AACAPwAAgD+aVYE79qgSulN/pruo0QA5cBcKu+QAMzoAAIA/AACAP43nhT5NlC0/ahq2vYRixr5djmw9oWkGPQAAAAAAAAAAJg2nvkZOHz8xDga9TViXvn/QIL5znyI+AAAAAAAAAAAAzUw9w7FQumX+XjtsvLw8+N8pOoqVor0AAIA/AACAP03BPb44tcW7gzlpu1fKkTypah09+oMEuwAAgD8AAIA/3UyuPnNczz5LSPW8ULBUvk9Xez2IKKg9AAAAAAAAAADmtJ++1UBQP0wnHr7T2aK+fNUDvipbCj4AAAAAAAAAAMBZMj5UuIS8rTpju6mJFzoY1vC9E5y+OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAfxTqkSXTUCUhpRSlIwBbJRN6AOMAXSUR0CCxBGTcIqtdX2UKGgGaAloD0MI+MH51DH5YECUhpRSlGgVTegDaBZHQILHVwNsnAt1fZQoaAZoCWgPQwindRvUfuVaQJSGlFKUaBVN6ANoFkdAgs8XqRlpXnV9lChoBmgJaA9DCEG4Agr1ADtAlIaUUpRoFU2aA2gWR0CC0arz5GjLdX2UKGgGaAloD0MIMucZ+5IZW0CUhpRSlGgVTegDaBZHQILtnX7Lt/p1fZQoaAZoCWgPQwgk8Ief/z5cQJSGlFKUaBVN6ANoFkdAgu51IZqEe3V9lChoBmgJaA9DCLUX0XZMD2RAlIaUUpRoFU3oA2gWR0CC7vSGahHtdX2UKGgGaAloD0MIBwq8k0/HXkCUhpRSlGgVTegDaBZHQIMmt/z8P4F1fZQoaAZoCWgPQwgMsfojDEZXQJSGlFKUaBVN6ANoFkdAgz5IpYs/ZHV9lChoBmgJaA9DCB+g+3JmRF5AlIaUUpRoFU3oA2gWR0CDQU1c+qzadX2UKGgGaAloD0MI7wIlBRZFWkCUhpRSlGgVTegDaBZHQINDXyAhB7h1fZQoaAZoCWgPQwg+srlqnoZgQJSGlFKUaBVN6ANoFkdAg0T642CNCXV9lChoBmgJaA9DCKbW+412tkJAlIaUUpRoFUvraBZHQINJqXhOxjd1fZQoaAZoCWgPQwgJ/OHnv6ZaQJSGlFKUaBVN6ANoFkdAg0++e4Cp33V9lChoBmgJaA9DCLVRnQ5kJFlAlIaUUpRoFU3oA2gWR0CDcdfE4vOAdX2UKGgGaAloD0MIR3GOOjpjXkCUhpRSlGgVTegDaBZHQIN6g0GeMAF1fZQoaAZoCWgPQwgB/FOqRJteQJSGlFKUaBVN6ANoFkdAg4K8qWkadnV9lChoBmgJaA9DCG4ZcJaSKmFAlIaUUpRoFU3oA2gWR0CDgyFpwjt5dX2UKGgGaAloD0MI7N6KxAQTXECUhpRSlGgVTegDaBZHQIOG7fHggox1fZQoaAZoCWgPQwh8mL1sO01aQJSGlFKUaBVN6ANoFkdAg41Tx5LRKHV9lChoBmgJaA9DCE0s8BXdp19AlIaUUpRoFU3oA2gWR0CDj1DCxeLOdX2UKGgGaAloD0MIWg9fJopEW0CUhpRSlGgVTegDaBZHQIOlOEh7mdR1fZQoaAZoCWgPQwi9cr1tpg9XQJSGlFKUaBVN6ANoFkdAg6Yh8QZn+XV9lChoBmgJaA9DCPzG155ZYV9AlIaUUpRoFU3oA2gWR0CDpqOIZZSvdX2UKGgGaAloD0MI6Sec3VrOQ0CUhpRSlGgVS/VoFkdAg6cTI3irDXV9lChoBmgJaA9DCMoV3uUiHhJAlIaUUpRoFU0rAWgWR0CDp4/i5uqFdX2UKGgGaAloD0MI6KOMuAA0FcCUhpRSlGgVS/JoFkdAg6mqRU3n6nV9lChoBmgJaA9DCEqZ1NAG6lhAlIaUUpRoFU3oA2gWR0CD+FsLORkmdX2UKGgGaAloD0MIEMmQY2tDYUCUhpRSlGgVTegDaBZHQIP7sNYr8SB1fZQoaAZoCWgPQwilL4Scd5lgQJSGlFKUaBVN6ANoFkdAg/3Q482aUnV9lChoBmgJaA9DCCsVVFT9JF5AlIaUUpRoFU3oA2gWR0CD/5xtpEhJdX2UKGgGaAloD0MIezApPj4OUkCUhpRSlGgVTegDaBZHQIQEs6zVtoB1fZQoaAZoCWgPQwiP4EbKFj5kQJSGlFKUaBVN6ANoFkdAhAq+AVfu1HV9lChoBmgJaA9DCKMBvAUScFtAlIaUUpRoFU3oA2gWR0CEKyu4gA6udX2UKGgGaAloD0MIvXMoQ1VxX0CUhpRSlGgVTegDaBZHQIQ6Y+IMz/J1fZQoaAZoCWgPQwgXu31WmbpfQJSGlFKUaBVN6ANoFkdAhET/RmbsnnV9lChoBmgJaA9DCNkh/mHLSmBAlIaUUpRoFU3oA2gWR0CERxndweeWdX2UKGgGaAloD0MIg2qDE1F4ZUCUhpRSlGgVTV4CaBZHQIRT5GBnSOR1fZQoaAZoCWgPQwhy3CkdLJNjQJSGlFKUaBVN6ANoFkdAhFwdZzPrwHV9lChoBmgJaA9DCHJuE+6VHF5AlIaUUpRoFU3oA2gWR0CEXPWPLgXNdX2UKGgGaAloD0MIIbHdPUDKXkCUhpRSlGgVTegDaBZHQIRdbGHYYix1fZQoaAZoCWgPQwiNtFTejjxcQJSGlFKUaBVN6ANoFkdAhF3KzRhMJ3V9lChoBmgJaA9DCJ7vp8ZLx2BAlIaUUpRoFU3oA2gWR0CEXislsxfwdX2UKGgGaAloD0MIWaMeolG4ZECUhpRSlGgVTegDaBZHQIRfwmCyyD91fZQoaAZoCWgPQwiCjla1pKdNQJSGlFKUaBVL22gWR0CEml1EE1VHdX2UKGgGaAloD0MIkga3tYXNX0CUhpRSlGgVTegDaBZHQISjgJHAh0R1fZQoaAZoCWgPQwikVMIT+ixgQJSGlFKUaBVN6ANoFkdAhKYLZamoBXV9lChoBmgJaA9DCCRCI9i4dFxAlIaUUpRoFU3oA2gWR0CEqV2TPjXGdX2UKGgGaAloD0MIG76FdeMRXUCUhpRSlGgVTegDaBZHQISt3JFLFn91fZQoaAZoCWgPQwh0stR6v8dcQJSGlFKUaBVN6ANoFkdAhLOArH2h7HV9lChoBmgJaA9DCMb83NAUx2FAlIaUUpRoFU3oA2gWR0CE1YbXpW3jdX2UKGgGaAloD0MISb2nctr4XECUhpRSlGgVTegDaBZHQITmKidrftR1fZQoaAZoCWgPQwhZ/RGGgSlgQJSGlFKUaBVN6ANoFkdAhPGqjSG8EnV9lChoBmgJaA9DCKYr2EY8GmFAlIaUUpRoFU3oA2gWR0CE9AUTtb9qdX2UKGgGaAloD0MIPulEgqlaWkCUhpRSlGgVTegDaBZHQIUC/GOuJUJ1fZQoaAZoCWgPQwi/fR04Z6taQJSGlFKUaBVN6ANoFkdAhQyX2ugYg3V9lChoBmgJaA9DCEgXm1YKX1pAlIaUUpRoFU3oA2gWR0CFDZWNFSbZdX2UKGgGaAloD0MIfA4sR0g/YECUhpRSlGgVTegDaBZHQIUOI9s7+1l1fZQoaAZoCWgPQwjrO78oQSVgQJSGlFKUaBVN6ANoFkdAhQ6VdxAB1nV9lChoBmgJaA9DCDuqmiDq7lpAlIaUUpRoFU3oA2gWR0CFERe2NNrTdX2UKGgGaAloD0MIIqZEEr2EPUCUhpRSlGgVTSUBaBZHQIUUGP/7zkJ1fZQoaAZoCWgPQwhX0R+aeZILQJSGlFKUaBVL9GgWR0CFFloxHoX9dX2UKGgGaAloD0MIGeQuwpTgZECUhpRSlGgVTe8CaBZHQIUYeb5M10l1fZQoaAZoCWgPQwgvM2yU9VlOQJSGlFKUaBVN6ANoFkdAhU3PBBRht3V9lChoBmgJaA9DCIhKI2Z2xGBAlIaUUpRoFU3oA2gWR0CFV3Nqxkd4dX2UKGgGaAloD0MIqtTsgVagO0CUhpRSlGgVS95oFkdAhVm5J04io3V9lChoBmgJaA9DCHbhB+dTPmRAlIaUUpRoFU3oA2gWR0CFWgSIxgy/dX2UKGgGaAloD0MIlgSoqWW3YUCUhpRSlGgVTegDaBZHQIViGMwUQCl1fZQoaAZoCWgPQwimRuhn6s9VQJSGlFKUaBVN6ANoFkdAhWgp6yB063V9lChoBmgJaA9DCCI4LuOm0jVAlIaUUpRoFUvwaBZHQIWBXE87p3Z1fZQoaAZoCWgPQwjJHMu76qFZQJSGlFKUaBVN6ANoFkdAhYe6uGKyfXV9lChoBmgJaA9DCI24ADRKgFlAlIaUUpRoFU3oA2gWR0CFodiEQGwBdX2UKGgGaAloD0MIuRtEa0X7NECUhpRSlGgVS95oFkdAhaez3AVO9HV9lChoBmgJaA9DCNhGPNnNJFxAlIaUUpRoFU3oA2gWR0CFrxg5zYEodX2UKGgGaAloD0MInwWhvI/CYkCUhpRSlGgVTegDaBZHQIW35mPHT7V1fZQoaAZoCWgPQwiHvyZr1KZgQJSGlFKUaBVN6ANoFkdAhbi8c+7lJnV9lChoBmgJaA9DCA6HpYEf1WJAlIaUUpRoFU3oA2gWR0CFuUB+4LCvdX2UKGgGaAloD0MIOllqvV+FYECUhpRSlGgVTegDaBZHQIW5pRl6JIl1fZQoaAZoCWgPQwhs7X2qCpViQJSGlFKUaBVN6ANoFkdAhbvgP3BYWHV9lChoBmgJaA9DCDyh15/ES1ZAlIaUUpRoFU3oA2gWR0CFvm6dUbT+dX2UKGgGaAloD0MIlFD6QkjfY0CUhpRSlGgVTegDaBZHQIXATGNrCWN1fZQoaAZoCWgPQwiQ3Jp0W/RCQJSGlFKUaBVL52gWR0CF9YJ0nw5OdX2UKGgGaAloD0MI6WSp9X7XMkCUhpRSlGgVS9toFkdAhfWn62v0RXV9lChoBmgJaA9DCPDErBdDqlVAlIaUUpRoFU3oA2gWR0CF9h1uivgWdX2UKGgGaAloD0MIg6RPq+h/X0CUhpRSlGgVTegDaBZHQIX+JcC5mRN1fZQoaAZoCWgPQwgbnfNTHB5fQJSGlFKUaBVN6ANoFkdAhgAmbb1yvXV9lChoBmgJaA9DCDIBv0aS7F5AlIaUUpRoFU3oA2gWR0CGAGhf0EowdX2UKGgGaAloD0MI7L5jeOz1XECUhpRSlGgVTegDaBZHQIYMuAoXsPd1fZQoaAZoCWgPQwhQjZduEiMPQJSGlFKUaBVL9GgWR0CGEgcJdB0IdX2UKGgGaAloD0MIELHBwkluNkCUhpRSlGgVS91oFkdAhhoKLjxTbXV9lChoBmgJaA9DCAwfEVMiyQ1AlIaUUpRoFUvdaBZHQIYc8qH446x1fZQoaAZoCWgPQwj2m4npQpFiQJSGlFKUaBVN6ANoFkdAhivI5PuXu3V9lChoBmgJaA9DCLFTrBqE8l9AlIaUUpRoFU3oA2gWR0CGTpM5fdAPdX2UKGgGaAloD0MIHlA25YqwZECUhpRSlGgVTegDaBZHQIZU+9nK4hF1fZQoaAZoCWgPQwhs7uh/ucxlQJSGlFKUaBVN6ANoFkdAhlyrT6SDAnV9lChoBmgJaA9DCJ2AJsKG0mFAlIaUUpRoFU3oA2gWR0CGZfRuTA32dX2UKGgGaAloD0MIs12hD5bqXECUhpRSlGgVTegDaBZHQIZmfC9AX2x1fZQoaAZoCWgPQwi9w+3QMENiQJSGlFKUaBVN6ANoFkdAhmmXxnWat3V9lChoBmgJaA9DCBcrajCNeWFAlIaUUpRoFU3oA2gWR0CGbGLiMo+fdX2UKGgGaAloD0MIT+YffRPrYUCUhpRSlGgVTegDaBZHQIZugp8WsRx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-sr12022022/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca5ef4f282114509d8d9ccc31482f1d23c047dd2613b9feccaf85059ec6a8d20
|
3 |
+
size 87865
|
ppo-LunarLander-v2-sr12022022/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20f5b7b5f042e7a9c226be35069e60deafec672e0e558e85bc04cc9124f20f79
|
3 |
+
size 43201
|
ppo-LunarLander-v2-sr12022022/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-sr12022022/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (231 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 156.9635431808104, "std_reward": 48.37560639776466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-02T14:57:28.281376"}
|