Jintao Huang commited on
Commit
cab4783
1 Parent(s): ffa118c

first commit

Browse files
.mdl ADDED
Binary file (70 Bytes). View file
 
.msc ADDED
Binary file (1.37 kB). View file
 
.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1713790835
README.md ADDED
@@ -0,0 +1,788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - gptq
7
+ - int8
8
+ - llama3
9
+ - facebook
10
+ - meta
11
+ - pytorch
12
+ - llama
13
+ - llama-3
14
+ license: other
15
+ license_name: llama3
16
+ license_link: LICENSE
17
+ extra_gated_prompt: >-
18
+ ### META LLAMA 3 COMMUNITY LICENSE AGREEMENT
19
+
20
+ Meta Llama 3 Version Release Date: April 18, 2024
21
+
22
+ "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the
23
+ Llama Materials set forth herein.
24
+
25
+ "Documentation" means the specifications, manuals and documentation accompanying Meta Llama 3
26
+ distributed by Meta at https://llama.meta.com/get-started/.
27
+
28
+ "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into
29
+ this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or
30
+ regulations to provide legal consent and that has legal authority to bind your employer or such other
31
+ person or entity if you are entering in this Agreement on their behalf.
32
+
33
+ "Meta Llama 3" means the foundational large language models and software and algorithms, including
34
+ machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
35
+ fine-tuning enabling code and other elements of the foregoing distributed by Meta at
36
+ https://llama.meta.com/llama-downloads.
37
+
38
+ "Llama Materials" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any
39
+ portion thereof) made available under this Agreement.
40
+
41
+ "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your
42
+ principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located
43
+ outside of the EEA or Switzerland).
44
+
45
+ 1. License Rights and Redistribution.
46
+
47
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free
48
+ limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama
49
+ Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the
50
+ Llama Materials.
51
+
52
+ b. Redistribution and Use.
53
+
54
+ i. If you distribute or make available the Llama Materials (or any derivative works
55
+ thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide
56
+ a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta
57
+ Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you
58
+ use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is
59
+ distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model
60
+ name.
61
+
62
+ ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
63
+ of an integrated end user product, then Section 2 of this Agreement will not apply to you.
64
+
65
+ iii. You must retain in all copies of the Llama Materials that you distribute the following
66
+ attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is
67
+ licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights
68
+ Reserved.”
69
+
70
+ iv. Your use of the Llama Materials must comply with applicable laws and regulations
71
+ (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama
72
+ Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by
73
+ reference into this Agreement.
74
+
75
+ v. You will not use the Llama Materials or any output or results of the Llama Materials to
76
+ improve any other large language model (excluding Meta Llama 3 or derivative works thereof).
77
+
78
+ 2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users
79
+ of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700
80
+ million monthly active users in the preceding calendar month, you must request a license from Meta,
81
+ which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the
82
+ rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
83
+
84
+ 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY
85
+ OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF
86
+ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,
87
+ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
88
+ MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
89
+ DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND
90
+ ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
91
+ RESULTS.
92
+
93
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF
94
+ LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING
95
+ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,
96
+ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED
97
+ OF THE POSSIBILITY OF ANY OF THE FOREGOING.
98
+
99
+ 5. Intellectual Property.
100
+
101
+ a. No trademark licenses are granted under this Agreement, and in connection with the Llama
102
+ Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other
103
+ or any of its affiliates, except as required for reasonable and customary use in describing and
104
+ redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to
105
+ use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will
106
+ comply with Meta’s brand guidelines (currently accessible at
107
+ https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use
108
+ of the Mark will inure to the benefit of Meta.
109
+
110
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with
111
+ respect to any derivative works and modifications of the Llama Materials that are made by you, as
112
+ between you and Meta, you are and will be the owner of such derivative works and modifications.
113
+
114
+ c. If you institute litigation or other proceedings against Meta or any entity (including a
115
+ cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or
116
+ results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other
117
+ rights owned or licensable by you, then any licenses granted to you under this Agreement shall
118
+ terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold
119
+ harmless Meta from and against any claim by any third party arising out of or related to your use or
120
+ distribution of the Llama Materials.
121
+
122
+ 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this
123
+ Agreement or access to the Llama Materials and will continue in full force and effect until terminated in
124
+ accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in
125
+ breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete
126
+ and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this
127
+ Agreement.
128
+
129
+ 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of
130
+ the State of California without regard to choice of law principles, and the UN Convention on Contracts
131
+ for the International Sale of Goods does not apply to this Agreement. The courts of California shall have
132
+ exclusive jurisdiction of any dispute arising out of this Agreement.
133
+
134
+ ### Meta Llama 3 Acceptable Use Policy
135
+
136
+ Meta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you
137
+ access or use Meta Llama 3, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of
138
+ this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)
139
+
140
+ #### Prohibited Uses
141
+
142
+ We want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow
143
+ others to use, Meta Llama 3 to:
144
+ 1. Violate the law or others’ rights, including to:
145
+ 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
146
+ 1. Violence or terrorism
147
+ 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
148
+ 3. Human trafficking, exploitation, and sexual violence
149
+ 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
150
+ 5. Sexual solicitation
151
+ 6. Any other criminal activity
152
+ 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
153
+ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
154
+ 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
155
+ 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
156
+ 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
157
+ 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
158
+ 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:
159
+ 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
160
+ 2. Guns and illegal weapons (including weapon development)
161
+ 3. Illegal drugs and regulated/controlled substances
162
+ 4. Operation of critical infrastructure, transportation technologies, or heavy machinery
163
+ 5. Self-harm or harm to others, including suicide, cutting, and eating disorders
164
+ 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
165
+ 3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:
166
+ 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
167
+ 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
168
+ 3. Generating, promoting, or further distributing spam
169
+ 4. Impersonating another individual without consent, authorization, or legal right
170
+ 5. Representing that the use of Meta Llama 3 or outputs are human-generated
171
+ 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
172
+ 4. Fail to appropriately disclose to end users any known dangers of your AI system
173
+
174
+ Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation
175
+ of this Policy through one of the following means:
176
+ * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)
177
+ * Reporting risky content generated by the model:
178
+ developers.facebook.com/llama_output_feedback
179
+ * Reporting bugs and security concerns: facebook.com/whitehat/info
180
+ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com
181
+ extra_gated_fields:
182
+ First Name: text
183
+ Last Name: text
184
+ Date of birth: date_picker
185
+ Country: country
186
+ Affiliation: text
187
+ geo: ip_location
188
+ By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
189
+ extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
190
+ extra_gated_button_content: Submit
191
+ ---
192
+
193
+ ## About Quantization
194
+ 我们使用modelscope [swift](https://github.com/modelscope/swift/)仓库进行GPTQ量化. 量化文档可以查看[这里](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E9%87%8F%E5%8C%96%E6%96%87%E6%A1%A3.md). 量化命令如下:
195
+
196
+ We use the modelscope [swift](https://github.com/modelscope/swift/) repository to perform GPTQ quantization. Quantization documentation can be found [here](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/LLM-quantization.md). The quantization command is as follows:
197
+
198
+ ```bash
199
+ OMP_NUM_THREADS=40 CUDA_VISIBLE_DEVICES=0 swift export \
200
+ --model_type llama3-70b-instruct --quant_bits 8 \
201
+ --dataset sharegpt-gpt4-mini --quant_method gptq --quant_seqlen 4096
202
+ ```
203
+
204
+ Inference:
205
+ ```bash
206
+ CUDA_VISIBLE_DEVICES=0 swift infer --model_type llama3-70b-instruct-int8
207
+ ```
208
+
209
+ SFT:
210
+ ```bash
211
+ CUDA_VISIBLE_DEVICES=0 swift sft --model_type llama3-70b-instruct-int8 --dataset leetcode-python-en
212
+ ```
213
+
214
+
215
+ ## Model Details
216
+
217
+ Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
218
+
219
+ **Model developers** Meta
220
+
221
+ **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
222
+
223
+ **Input** Models input text only.
224
+
225
+ **Output** Models generate text and code only.
226
+
227
+ **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
228
+
229
+
230
+ <table>
231
+ <tr>
232
+ <td>
233
+ </td>
234
+ <td><strong>Training Data</strong>
235
+ </td>
236
+ <td><strong>Params</strong>
237
+ </td>
238
+ <td><strong>Context length</strong>
239
+ </td>
240
+ <td><strong>GQA</strong>
241
+ </td>
242
+ <td><strong>Token count</strong>
243
+ </td>
244
+ <td><strong>Knowledge cutoff</strong>
245
+ </td>
246
+ </tr>
247
+ <tr>
248
+ <td rowspan="2" >Llama 3
249
+ </td>
250
+ <td rowspan="2" >A new mix of publicly available online data.
251
+ </td>
252
+ <td>8B
253
+ </td>
254
+ <td>8k
255
+ </td>
256
+ <td>Yes
257
+ </td>
258
+ <td rowspan="2" >15T+
259
+ </td>
260
+ <td>March, 2023
261
+ </td>
262
+ </tr>
263
+ <tr>
264
+ <td>70B
265
+ </td>
266
+ <td>8k
267
+ </td>
268
+ <td>Yes
269
+ </td>
270
+ <td>December, 2023
271
+ </td>
272
+ </tr>
273
+ </table>
274
+
275
+
276
+ **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
277
+
278
+ **Model Release Date** April 18, 2024.
279
+
280
+ **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
281
+
282
+ **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
283
+
284
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
285
+
286
+
287
+ ## Intended Use
288
+
289
+ **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
290
+
291
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
292
+
293
+ **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
294
+
295
+ ## How to use
296
+
297
+ This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase.
298
+
299
+ ### Use with transformers
300
+
301
+ See the snippet below for usage with Transformers:
302
+
303
+ ```python
304
+ import transformers
305
+ import torch
306
+
307
+ model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
308
+
309
+ pipeline = transformers.pipeline(
310
+ "text-generation",
311
+ model=model_id,
312
+ model_kwargs={"torch_dtype": torch.bfloat16},
313
+ device="cuda",
314
+ )
315
+
316
+ messages = [
317
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
318
+ {"role": "user", "content": "Who are you?"},
319
+ ]
320
+
321
+ prompt = pipeline.tokenizer.apply_chat_template(
322
+ messages,
323
+ tokenize=False,
324
+ add_generation_prompt=True
325
+ )
326
+
327
+ terminators = [
328
+ tokenizer.eos_token_id,
329
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
330
+ ]
331
+
332
+ outputs = pipeline(
333
+ prompt,
334
+ max_new_tokens=256,
335
+ eos_token_id=terminators,
336
+ do_sample=True,
337
+ temperature=0.6,
338
+ top_p=0.9,
339
+ )
340
+ print(outputs[0]["generated_text"][len(prompt):])
341
+ ```
342
+
343
+ ### Use with `llama3`
344
+
345
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
346
+
347
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
348
+
349
+ ```
350
+ huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct
351
+ ```
352
+
353
+ For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
354
+
355
+ ## Hardware and Software
356
+
357
+ **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
358
+
359
+ **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
360
+
361
+
362
+ <table>
363
+ <tr>
364
+ <td>
365
+ </td>
366
+ <td><strong>Time (GPU hours)</strong>
367
+ </td>
368
+ <td><strong>Power Consumption (W)</strong>
369
+ </td>
370
+ <td><strong>Carbon Emitted(tCO2eq)</strong>
371
+ </td>
372
+ </tr>
373
+ <tr>
374
+ <td>Llama 3 8B
375
+ </td>
376
+ <td>1.3M
377
+ </td>
378
+ <td>700
379
+ </td>
380
+ <td>390
381
+ </td>
382
+ </tr>
383
+ <tr>
384
+ <td>Llama 3 70B
385
+ </td>
386
+ <td>6.4M
387
+ </td>
388
+ <td>700
389
+ </td>
390
+ <td>1900
391
+ </td>
392
+ </tr>
393
+ <tr>
394
+ <td>Total
395
+ </td>
396
+ <td>7.7M
397
+ </td>
398
+ <td>
399
+ </td>
400
+ <td>2290
401
+ </td>
402
+ </tr>
403
+ </table>
404
+
405
+
406
+
407
+ **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
408
+
409
+
410
+ ## Training Data
411
+
412
+ **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
413
+
414
+ **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.
415
+
416
+
417
+ ## Benchmarks
418
+
419
+ In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
420
+
421
+
422
+ ### Base pretrained models
423
+
424
+
425
+ <table>
426
+ <tr>
427
+ <td><strong>Category</strong>
428
+ </td>
429
+ <td><strong>Benchmark</strong>
430
+ </td>
431
+ <td><strong>Llama 3 8B</strong>
432
+ </td>
433
+ <td><strong>Llama2 7B</strong>
434
+ </td>
435
+ <td><strong>Llama2 13B</strong>
436
+ </td>
437
+ <td><strong>Llama 3 70B</strong>
438
+ </td>
439
+ <td><strong>Llama2 70B</strong>
440
+ </td>
441
+ </tr>
442
+ <tr>
443
+ <td rowspan="6" >General
444
+ </td>
445
+ <td>MMLU (5-shot)
446
+ </td>
447
+ <td>66.6
448
+ </td>
449
+ <td>45.7
450
+ </td>
451
+ <td>53.8
452
+ </td>
453
+ <td>79.5
454
+ </td>
455
+ <td>69.7
456
+ </td>
457
+ </tr>
458
+ <tr>
459
+ <td>AGIEval English (3-5 shot)
460
+ </td>
461
+ <td>45.9
462
+ </td>
463
+ <td>28.8
464
+ </td>
465
+ <td>38.7
466
+ </td>
467
+ <td>63.0
468
+ </td>
469
+ <td>54.8
470
+ </td>
471
+ </tr>
472
+ <tr>
473
+ <td>CommonSenseQA (7-shot)
474
+ </td>
475
+ <td>72.6
476
+ </td>
477
+ <td>57.6
478
+ </td>
479
+ <td>67.6
480
+ </td>
481
+ <td>83.8
482
+ </td>
483
+ <td>78.7
484
+ </td>
485
+ </tr>
486
+ <tr>
487
+ <td>Winogrande (5-shot)
488
+ </td>
489
+ <td>76.1
490
+ </td>
491
+ <td>73.3
492
+ </td>
493
+ <td>75.4
494
+ </td>
495
+ <td>83.1
496
+ </td>
497
+ <td>81.8
498
+ </td>
499
+ </tr>
500
+ <tr>
501
+ <td>BIG-Bench Hard (3-shot, CoT)
502
+ </td>
503
+ <td>61.1
504
+ </td>
505
+ <td>38.1
506
+ </td>
507
+ <td>47.0
508
+ </td>
509
+ <td>81.3
510
+ </td>
511
+ <td>65.7
512
+ </td>
513
+ </tr>
514
+ <tr>
515
+ <td>ARC-Challenge (25-shot)
516
+ </td>
517
+ <td>78.6
518
+ </td>
519
+ <td>53.7
520
+ </td>
521
+ <td>67.6
522
+ </td>
523
+ <td>93.0
524
+ </td>
525
+ <td>85.3
526
+ </td>
527
+ </tr>
528
+ <tr>
529
+ <td>Knowledge reasoning
530
+ </td>
531
+ <td>TriviaQA-Wiki (5-shot)
532
+ </td>
533
+ <td>78.5
534
+ </td>
535
+ <td>72.1
536
+ </td>
537
+ <td>79.6
538
+ </td>
539
+ <td>89.7
540
+ </td>
541
+ <td>87.5
542
+ </td>
543
+ </tr>
544
+ <tr>
545
+ <td rowspan="4" >Reading comprehension
546
+ </td>
547
+ <td>SQuAD (1-shot)
548
+ </td>
549
+ <td>76.4
550
+ </td>
551
+ <td>72.2
552
+ </td>
553
+ <td>72.1
554
+ </td>
555
+ <td>85.6
556
+ </td>
557
+ <td>82.6
558
+ </td>
559
+ </tr>
560
+ <tr>
561
+ <td>QuAC (1-shot, F1)
562
+ </td>
563
+ <td>44.4
564
+ </td>
565
+ <td>39.6
566
+ </td>
567
+ <td>44.9
568
+ </td>
569
+ <td>51.1
570
+ </td>
571
+ <td>49.4
572
+ </td>
573
+ </tr>
574
+ <tr>
575
+ <td>BoolQ (0-shot)
576
+ </td>
577
+ <td>75.7
578
+ </td>
579
+ <td>65.5
580
+ </td>
581
+ <td>66.9
582
+ </td>
583
+ <td>79.0
584
+ </td>
585
+ <td>73.1
586
+ </td>
587
+ </tr>
588
+ <tr>
589
+ <td>DROP (3-shot, F1)
590
+ </td>
591
+ <td>58.4
592
+ </td>
593
+ <td>37.9
594
+ </td>
595
+ <td>49.8
596
+ </td>
597
+ <td>79.7
598
+ </td>
599
+ <td>70.2
600
+ </td>
601
+ </tr>
602
+ </table>
603
+
604
+
605
+
606
+ ### Instruction tuned models
607
+
608
+
609
+ <table>
610
+ <tr>
611
+ <td><strong>Benchmark</strong>
612
+ </td>
613
+ <td><strong>Llama 3 8B</strong>
614
+ </td>
615
+ <td><strong>Llama 2 7B</strong>
616
+ </td>
617
+ <td><strong>Llama 2 13B</strong>
618
+ </td>
619
+ <td><strong>Llama 3 70B</strong>
620
+ </td>
621
+ <td><strong>Llama 2 70B</strong>
622
+ </td>
623
+ </tr>
624
+ <tr>
625
+ <td>MMLU (5-shot)
626
+ </td>
627
+ <td>68.4
628
+ </td>
629
+ <td>34.1
630
+ </td>
631
+ <td>47.8
632
+ </td>
633
+ <td>82.0
634
+ </td>
635
+ <td>52.9
636
+ </td>
637
+ </tr>
638
+ <tr>
639
+ <td>GPQA (0-shot)
640
+ </td>
641
+ <td>34.2
642
+ </td>
643
+ <td>21.7
644
+ </td>
645
+ <td>22.3
646
+ </td>
647
+ <td>39.5
648
+ </td>
649
+ <td>21.0
650
+ </td>
651
+ </tr>
652
+ <tr>
653
+ <td>HumanEval (0-shot)
654
+ </td>
655
+ <td>62.2
656
+ </td>
657
+ <td>7.9
658
+ </td>
659
+ <td>14.0
660
+ </td>
661
+ <td>81.7
662
+ </td>
663
+ <td>25.6
664
+ </td>
665
+ </tr>
666
+ <tr>
667
+ <td>GSM-8K (8-shot, CoT)
668
+ </td>
669
+ <td>79.6
670
+ </td>
671
+ <td>25.7
672
+ </td>
673
+ <td>77.4
674
+ </td>
675
+ <td>93.0
676
+ </td>
677
+ <td>57.5
678
+ </td>
679
+ </tr>
680
+ <tr>
681
+ <td>MATH (4-shot, CoT)
682
+ </td>
683
+ <td>30.0
684
+ </td>
685
+ <td>3.8
686
+ </td>
687
+ <td>6.7
688
+ </td>
689
+ <td>50.4
690
+ </td>
691
+ <td>11.6
692
+ </td>
693
+ </tr>
694
+ </table>
695
+
696
+
697
+
698
+ ### Responsibility & Safety
699
+
700
+ We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
701
+
702
+ Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
703
+
704
+ Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
705
+
706
+
707
+ As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
708
+
709
+
710
+ #### Llama 3-Instruct
711
+
712
+ As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
713
+
714
+ <span style="text-decoration:underline;">Safety</span>
715
+
716
+ For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
717
+
718
+ <span style="text-decoration:underline;">Refusals</span>
719
+
720
+ In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
721
+
722
+ We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
723
+
724
+
725
+ #### Responsible release
726
+
727
+ In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
728
+
729
+ Misuse
730
+
731
+ If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
732
+
733
+
734
+ #### Critical risks
735
+
736
+ <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
737
+
738
+ We have conducted a two fold assessment of the safety of the model in this area:
739
+
740
+
741
+
742
+ * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
743
+ * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
744
+
745
+
746
+ ### <span style="text-decoration:underline;">Cyber Security </span>
747
+
748
+ We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
749
+
750
+
751
+ ### <span style="text-decoration:underline;">Child Safety</span>
752
+
753
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
754
+
755
+
756
+ ### Community
757
+
758
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
759
+
760
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
761
+
762
+
763
+ ## Ethical Considerations and Limitations
764
+
765
+ The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
766
+
767
+ But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
768
+
769
+ Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
770
+
771
+
772
+ ## Citation instructions
773
+
774
+ @article{llama3modelcard,
775
+
776
+ title={Llama 3 Model Card},
777
+
778
+ author={AI@Meta},
779
+
780
+ year={2024},
781
+
782
+ url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
783
+
784
+ }
785
+
786
+ ## Contributors
787
+
788
+ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/nas2/huangjintao.hjt/.cache/modelscope/hub/LLM-Research/Meta-Llama-3-70B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128001,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 8192,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 28672,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 64,
17
+ "num_hidden_layers": 80,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "bits": 8,
22
+ "damp_percent": 0.1,
23
+ "dataset": "sharegpt-gpt4-mini",
24
+ "desc_act": false,
25
+ "group_size": 128,
26
+ "modules_in_block_to_quantize": null,
27
+ "quant_method": "gptq",
28
+ "sym": true,
29
+ "true_sequential": true
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.39.3",
37
+ "use_cache": true,
38
+ "vocab_size": 128256
39
+ }
configuration.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "framework": "Pytorch",
3
+ "task": "text-generation"
4
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.40.0.dev0"
6
+ }
model-00001-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f60df14e0a87d22ba4638be1c477c6c984aab645fbb723ad882b0ff1f2a27373
3
+ size 9995840440
model-00002-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39af01e6a5b9560e16a6833adf5bf26e05abed01c52ec803e2ccb25c3654d9f3
3
+ size 9784373632
model-00003-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dabf57a9e29ac79551ddf5faebdeb169829ea14a1d4db0e468a355984fb22af3
3
+ size 9878807856
model-00004-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5912ea09ba1a16ba29d6cd16e82c7b50db960e40a4bcc787809b24d0af61ba69
3
+ size 9878766896
model-00005-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:442e1c212b9b1da5170600aa39e56ddeba6ea83a6c4467be45927e4bdf566d6e
3
+ size 9956151928
model-00006-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cffc379252af0b0203f846417e6911472f7004cb3ee84bf92be7d6009d43dc4f
3
+ size 9956159904
model-00007-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca0fb65877c052533d5c6dee8b37bd6b7b9efc2330f617b3bff53953879e855b
3
+ size 9878766896
model-00008-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39bd7f974c685fcfe2e605bb83a66e29e02b90d44b83222997cd3c9700fa3bff
3
+ size 4970497168
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 8,
3
+ "dataset": "sharegpt-gpt4-mini",
4
+ "group_size": 128,
5
+ "damp_percent": 0.1,
6
+ "desc_act": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "quant_method": "gptq",
10
+ "modules_in_block_to_quantize": null
11
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|end_of_text|>",
17
+ "unk_token": "<unk>"
18
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "128000": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "128001": {
14
+ "content": "<|end_of_text|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "128002": {
22
+ "content": "<|reserved_special_token_0|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "128003": {
30
+ "content": "<|reserved_special_token_1|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "128004": {
38
+ "content": "<|reserved_special_token_2|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "128005": {
46
+ "content": "<|reserved_special_token_3|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "128006": {
54
+ "content": "<|start_header_id|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "128007": {
62
+ "content": "<|end_header_id|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "128008": {
70
+ "content": "<|reserved_special_token_4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "128009": {
78
+ "content": "<|eot_id|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "128010": {
86
+ "content": "<|reserved_special_token_5|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "128011": {
94
+ "content": "<|reserved_special_token_6|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "128012": {
102
+ "content": "<|reserved_special_token_7|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "128013": {
110
+ "content": "<|reserved_special_token_8|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "128014": {
118
+ "content": "<|reserved_special_token_9|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "128015": {
126
+ "content": "<|reserved_special_token_10|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "128016": {
134
+ "content": "<|reserved_special_token_11|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "128017": {
142
+ "content": "<|reserved_special_token_12|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "128018": {
150
+ "content": "<|reserved_special_token_13|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "128019": {
158
+ "content": "<|reserved_special_token_14|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "128020": {
166
+ "content": "<|reserved_special_token_15|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "128021": {
174
+ "content": "<|reserved_special_token_16|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "128022": {
182
+ "content": "<|reserved_special_token_17|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "128023": {
190
+ "content": "<|reserved_special_token_18|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "128024": {
198
+ "content": "<|reserved_special_token_19|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "128025": {
206
+ "content": "<|reserved_special_token_20|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "128026": {
214
+ "content": "<|reserved_special_token_21|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "128027": {
222
+ "content": "<|reserved_special_token_22|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "128028": {
230
+ "content": "<|reserved_special_token_23|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "128029": {
238
+ "content": "<|reserved_special_token_24|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "128030": {
246
+ "content": "<|reserved_special_token_25|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "128031": {
254
+ "content": "<|reserved_special_token_26|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "128032": {
262
+ "content": "<|reserved_special_token_27|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "128033": {
270
+ "content": "<|reserved_special_token_28|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "128034": {
278
+ "content": "<|reserved_special_token_29|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "128035": {
286
+ "content": "<|reserved_special_token_30|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "128036": {
294
+ "content": "<|reserved_special_token_31|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "128037": {
302
+ "content": "<|reserved_special_token_32|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "128038": {
310
+ "content": "<|reserved_special_token_33|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "128039": {
318
+ "content": "<|reserved_special_token_34|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "128040": {
326
+ "content": "<|reserved_special_token_35|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "128041": {
334
+ "content": "<|reserved_special_token_36|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "128042": {
342
+ "content": "<|reserved_special_token_37|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "128043": {
350
+ "content": "<|reserved_special_token_38|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "128044": {
358
+ "content": "<|reserved_special_token_39|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "128045": {
366
+ "content": "<|reserved_special_token_40|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "128046": {
374
+ "content": "<|reserved_special_token_41|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "128047": {
382
+ "content": "<|reserved_special_token_42|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "128048": {
390
+ "content": "<|reserved_special_token_43|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "128049": {
398
+ "content": "<|reserved_special_token_44|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "128050": {
406
+ "content": "<|reserved_special_token_45|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "128051": {
414
+ "content": "<|reserved_special_token_46|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "128052": {
422
+ "content": "<|reserved_special_token_47|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "128053": {
430
+ "content": "<|reserved_special_token_48|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "128054": {
438
+ "content": "<|reserved_special_token_49|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "128055": {
446
+ "content": "<|reserved_special_token_50|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "128056": {
454
+ "content": "<|reserved_special_token_51|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "128057": {
462
+ "content": "<|reserved_special_token_52|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "128058": {
470
+ "content": "<|reserved_special_token_53|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "128059": {
478
+ "content": "<|reserved_special_token_54|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "128060": {
486
+ "content": "<|reserved_special_token_55|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "128061": {
494
+ "content": "<|reserved_special_token_56|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "128062": {
502
+ "content": "<|reserved_special_token_57|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "128063": {
510
+ "content": "<|reserved_special_token_58|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "128064": {
518
+ "content": "<|reserved_special_token_59|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "128065": {
526
+ "content": "<|reserved_special_token_60|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "128066": {
534
+ "content": "<|reserved_special_token_61|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "128067": {
542
+ "content": "<|reserved_special_token_62|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "128068": {
550
+ "content": "<|reserved_special_token_63|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "128069": {
558
+ "content": "<|reserved_special_token_64|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "128070": {
566
+ "content": "<|reserved_special_token_65|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "128071": {
574
+ "content": "<|reserved_special_token_66|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "128072": {
582
+ "content": "<|reserved_special_token_67|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "128073": {
590
+ "content": "<|reserved_special_token_68|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "128074": {
598
+ "content": "<|reserved_special_token_69|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "128075": {
606
+ "content": "<|reserved_special_token_70|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "128076": {
614
+ "content": "<|reserved_special_token_71|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "128077": {
622
+ "content": "<|reserved_special_token_72|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "128078": {
630
+ "content": "<|reserved_special_token_73|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "128079": {
638
+ "content": "<|reserved_special_token_74|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "128080": {
646
+ "content": "<|reserved_special_token_75|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "128081": {
654
+ "content": "<|reserved_special_token_76|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "128082": {
662
+ "content": "<|reserved_special_token_77|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "128083": {
670
+ "content": "<|reserved_special_token_78|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "128084": {
678
+ "content": "<|reserved_special_token_79|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "128085": {
686
+ "content": "<|reserved_special_token_80|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "128086": {
694
+ "content": "<|reserved_special_token_81|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "128087": {
702
+ "content": "<|reserved_special_token_82|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "128088": {
710
+ "content": "<|reserved_special_token_83|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "128089": {
718
+ "content": "<|reserved_special_token_84|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "128090": {
726
+ "content": "<|reserved_special_token_85|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "128091": {
734
+ "content": "<|reserved_special_token_86|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "128092": {
742
+ "content": "<|reserved_special_token_87|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "128093": {
750
+ "content": "<|reserved_special_token_88|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "128094": {
758
+ "content": "<|reserved_special_token_89|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "128095": {
766
+ "content": "<|reserved_special_token_90|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "128096": {
774
+ "content": "<|reserved_special_token_91|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "128097": {
782
+ "content": "<|reserved_special_token_92|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "128098": {
790
+ "content": "<|reserved_special_token_93|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "128099": {
798
+ "content": "<|reserved_special_token_94|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "128100": {
806
+ "content": "<|reserved_special_token_95|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "128101": {
814
+ "content": "<|reserved_special_token_96|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "128102": {
822
+ "content": "<|reserved_special_token_97|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "128103": {
830
+ "content": "<|reserved_special_token_98|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "128104": {
838
+ "content": "<|reserved_special_token_99|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "128105": {
846
+ "content": "<|reserved_special_token_100|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "128106": {
854
+ "content": "<|reserved_special_token_101|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "128107": {
862
+ "content": "<|reserved_special_token_102|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "128108": {
870
+ "content": "<|reserved_special_token_103|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "128109": {
878
+ "content": "<|reserved_special_token_104|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "128110": {
886
+ "content": "<|reserved_special_token_105|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "128111": {
894
+ "content": "<|reserved_special_token_106|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "128112": {
902
+ "content": "<|reserved_special_token_107|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "128113": {
910
+ "content": "<|reserved_special_token_108|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "128114": {
918
+ "content": "<|reserved_special_token_109|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "128115": {
926
+ "content": "<|reserved_special_token_110|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "128116": {
934
+ "content": "<|reserved_special_token_111|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "128117": {
942
+ "content": "<|reserved_special_token_112|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "128118": {
950
+ "content": "<|reserved_special_token_113|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "128119": {
958
+ "content": "<|reserved_special_token_114|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "128120": {
966
+ "content": "<|reserved_special_token_115|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "128121": {
974
+ "content": "<|reserved_special_token_116|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "128122": {
982
+ "content": "<|reserved_special_token_117|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "128123": {
990
+ "content": "<|reserved_special_token_118|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "128124": {
998
+ "content": "<|reserved_special_token_119|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "128125": {
1006
+ "content": "<|reserved_special_token_120|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "128126": {
1014
+ "content": "<|reserved_special_token_121|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "128127": {
1022
+ "content": "<|reserved_special_token_122|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "128128": {
1030
+ "content": "<|reserved_special_token_123|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "128129": {
1038
+ "content": "<|reserved_special_token_124|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "128130": {
1046
+ "content": "<|reserved_special_token_125|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "128131": {
1054
+ "content": "<|reserved_special_token_126|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "128132": {
1062
+ "content": "<|reserved_special_token_127|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "128133": {
1070
+ "content": "<|reserved_special_token_128|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "128134": {
1078
+ "content": "<|reserved_special_token_129|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "128135": {
1086
+ "content": "<|reserved_special_token_130|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "128136": {
1094
+ "content": "<|reserved_special_token_131|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "128137": {
1102
+ "content": "<|reserved_special_token_132|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "128138": {
1110
+ "content": "<|reserved_special_token_133|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "128139": {
1118
+ "content": "<|reserved_special_token_134|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "128140": {
1126
+ "content": "<|reserved_special_token_135|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "128141": {
1134
+ "content": "<|reserved_special_token_136|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "128142": {
1142
+ "content": "<|reserved_special_token_137|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "128143": {
1150
+ "content": "<|reserved_special_token_138|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "128144": {
1158
+ "content": "<|reserved_special_token_139|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "128145": {
1166
+ "content": "<|reserved_special_token_140|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "128146": {
1174
+ "content": "<|reserved_special_token_141|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "128147": {
1182
+ "content": "<|reserved_special_token_142|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "128148": {
1190
+ "content": "<|reserved_special_token_143|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "128149": {
1198
+ "content": "<|reserved_special_token_144|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "128150": {
1206
+ "content": "<|reserved_special_token_145|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "128151": {
1214
+ "content": "<|reserved_special_token_146|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "128152": {
1222
+ "content": "<|reserved_special_token_147|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "128153": {
1230
+ "content": "<|reserved_special_token_148|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "128154": {
1238
+ "content": "<|reserved_special_token_149|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "128155": {
1246
+ "content": "<|reserved_special_token_150|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "128156": {
1254
+ "content": "<|reserved_special_token_151|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "128157": {
1262
+ "content": "<|reserved_special_token_152|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "128158": {
1270
+ "content": "<|reserved_special_token_153|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "128159": {
1278
+ "content": "<|reserved_special_token_154|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "128160": {
1286
+ "content": "<|reserved_special_token_155|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "128161": {
1294
+ "content": "<|reserved_special_token_156|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "128162": {
1302
+ "content": "<|reserved_special_token_157|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "128163": {
1310
+ "content": "<|reserved_special_token_158|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "128164": {
1318
+ "content": "<|reserved_special_token_159|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "128165": {
1326
+ "content": "<|reserved_special_token_160|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "128166": {
1334
+ "content": "<|reserved_special_token_161|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "128167": {
1342
+ "content": "<|reserved_special_token_162|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "128168": {
1350
+ "content": "<|reserved_special_token_163|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "128169": {
1358
+ "content": "<|reserved_special_token_164|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "128170": {
1366
+ "content": "<|reserved_special_token_165|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "128171": {
1374
+ "content": "<|reserved_special_token_166|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "128172": {
1382
+ "content": "<|reserved_special_token_167|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "128173": {
1390
+ "content": "<|reserved_special_token_168|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "128174": {
1398
+ "content": "<|reserved_special_token_169|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "128175": {
1406
+ "content": "<|reserved_special_token_170|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "128176": {
1414
+ "content": "<|reserved_special_token_171|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "128177": {
1422
+ "content": "<|reserved_special_token_172|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "128178": {
1430
+ "content": "<|reserved_special_token_173|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "128179": {
1438
+ "content": "<|reserved_special_token_174|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "128180": {
1446
+ "content": "<|reserved_special_token_175|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "128181": {
1454
+ "content": "<|reserved_special_token_176|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "128182": {
1462
+ "content": "<|reserved_special_token_177|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "128183": {
1470
+ "content": "<|reserved_special_token_178|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "128184": {
1478
+ "content": "<|reserved_special_token_179|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "128185": {
1486
+ "content": "<|reserved_special_token_180|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "128186": {
1494
+ "content": "<|reserved_special_token_181|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "128187": {
1502
+ "content": "<|reserved_special_token_182|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "128188": {
1510
+ "content": "<|reserved_special_token_183|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "128189": {
1518
+ "content": "<|reserved_special_token_184|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "128190": {
1526
+ "content": "<|reserved_special_token_185|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "128191": {
1534
+ "content": "<|reserved_special_token_186|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "128192": {
1542
+ "content": "<|reserved_special_token_187|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "128193": {
1550
+ "content": "<|reserved_special_token_188|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "128194": {
1558
+ "content": "<|reserved_special_token_189|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "128195": {
1566
+ "content": "<|reserved_special_token_190|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "128196": {
1574
+ "content": "<|reserved_special_token_191|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "128197": {
1582
+ "content": "<|reserved_special_token_192|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "128198": {
1590
+ "content": "<|reserved_special_token_193|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "128199": {
1598
+ "content": "<|reserved_special_token_194|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "128200": {
1606
+ "content": "<|reserved_special_token_195|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "128201": {
1614
+ "content": "<|reserved_special_token_196|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "128202": {
1622
+ "content": "<|reserved_special_token_197|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "128203": {
1630
+ "content": "<|reserved_special_token_198|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "128204": {
1638
+ "content": "<|reserved_special_token_199|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "128205": {
1646
+ "content": "<|reserved_special_token_200|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "128206": {
1654
+ "content": "<|reserved_special_token_201|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "128207": {
1662
+ "content": "<|reserved_special_token_202|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "128208": {
1670
+ "content": "<|reserved_special_token_203|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "128209": {
1678
+ "content": "<|reserved_special_token_204|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "128210": {
1686
+ "content": "<|reserved_special_token_205|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "128211": {
1694
+ "content": "<|reserved_special_token_206|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "128212": {
1702
+ "content": "<|reserved_special_token_207|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "128213": {
1710
+ "content": "<|reserved_special_token_208|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "128214": {
1718
+ "content": "<|reserved_special_token_209|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "128215": {
1726
+ "content": "<|reserved_special_token_210|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "128216": {
1734
+ "content": "<|reserved_special_token_211|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "128217": {
1742
+ "content": "<|reserved_special_token_212|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "128218": {
1750
+ "content": "<|reserved_special_token_213|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "128219": {
1758
+ "content": "<|reserved_special_token_214|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "128220": {
1766
+ "content": "<|reserved_special_token_215|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "128221": {
1774
+ "content": "<|reserved_special_token_216|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "128222": {
1782
+ "content": "<|reserved_special_token_217|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "128223": {
1790
+ "content": "<|reserved_special_token_218|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "128224": {
1798
+ "content": "<|reserved_special_token_219|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "128225": {
1806
+ "content": "<|reserved_special_token_220|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "128226": {
1814
+ "content": "<|reserved_special_token_221|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "128227": {
1822
+ "content": "<|reserved_special_token_222|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "128228": {
1830
+ "content": "<|reserved_special_token_223|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "128229": {
1838
+ "content": "<|reserved_special_token_224|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "128230": {
1846
+ "content": "<|reserved_special_token_225|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "128231": {
1854
+ "content": "<|reserved_special_token_226|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "128232": {
1862
+ "content": "<|reserved_special_token_227|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "128233": {
1870
+ "content": "<|reserved_special_token_228|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "128234": {
1878
+ "content": "<|reserved_special_token_229|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "128235": {
1886
+ "content": "<|reserved_special_token_230|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "128236": {
1894
+ "content": "<|reserved_special_token_231|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "128237": {
1902
+ "content": "<|reserved_special_token_232|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "128238": {
1910
+ "content": "<|reserved_special_token_233|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "128239": {
1918
+ "content": "<|reserved_special_token_234|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "128240": {
1926
+ "content": "<|reserved_special_token_235|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "128241": {
1934
+ "content": "<|reserved_special_token_236|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "128242": {
1942
+ "content": "<|reserved_special_token_237|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "128243": {
1950
+ "content": "<|reserved_special_token_238|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "128244": {
1958
+ "content": "<|reserved_special_token_239|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "128245": {
1966
+ "content": "<|reserved_special_token_240|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "128246": {
1974
+ "content": "<|reserved_special_token_241|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "128247": {
1982
+ "content": "<|reserved_special_token_242|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "128248": {
1990
+ "content": "<|reserved_special_token_243|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "128249": {
1998
+ "content": "<|reserved_special_token_244|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "128250": {
2006
+ "content": "<|reserved_special_token_245|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "128251": {
2014
+ "content": "<|reserved_special_token_246|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "128252": {
2022
+ "content": "<|reserved_special_token_247|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "128253": {
2030
+ "content": "<|reserved_special_token_248|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "128254": {
2038
+ "content": "<|reserved_special_token_249|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "128255": {
2046
+ "content": "<|reserved_special_token_250|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "128256": {
2054
+ "content": "<unk>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ }
2061
+ },
2062
+ "bos_token": "<|begin_of_text|>",
2063
+ "clean_up_tokenization_spaces": false,
2064
+ "eos_token": "<|end_of_text|>",
2065
+ "model_max_length": 1000000000000000019884624838656,
2066
+ "pad_token": "<|end_of_text|>",
2067
+ "tokenizer_class": "LlamaTokenizer",
2068
+ "unk_token": "<unk>",
2069
+ "use_default_system_prompt": false
2070
+ }