--- license: cc-by-nc-sa-4.0 base_model: ufal/robeczech-base tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_robeczech-base results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8354960234407702 - name: Recall type: recall value: 0.8812362030905078 - name: F1 type: f1 value: 0.8577567683712936 - name: Accuracy type: accuracy value: 0.9450064850843061 --- # CNEC_1_1_robeczech-base This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Precision: 0.8355 - Recall: 0.8812 - F1: 0.8578 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7852 | 10.2 | 1500 | 0.6287 | 0.3577 | 0.2375 | 0.2855 | 0.8413 | | 0.3806 | 20.41 | 3000 | 0.3455 | 0.7275 | 0.7779 | 0.7519 | 0.9240 | | 0.2384 | 30.61 | 4500 | 0.2764 | 0.8139 | 0.8552 | 0.8340 | 0.9383 | | 0.1722 | 40.82 | 6000 | 0.2640 | 0.8361 | 0.8693 | 0.8524 | 0.9450 | | 0.1357 | 51.02 | 7500 | 0.2666 | 0.8362 | 0.8702 | 0.8529 | 0.9454 | | 0.1115 | 61.22 | 9000 | 0.2697 | 0.8423 | 0.8751 | 0.8584 | 0.9457 | | 0.098 | 71.43 | 10500 | 0.2816 | 0.8355 | 0.8812 | 0.8578 | 0.9450 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0