--- license: cc-by-nc-sa-4.0 base_model: ufal/robeczech-base tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_robeczech-base results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8457943925233645 - name: Recall type: recall value: 0.879028697571744 - name: F1 type: f1 value: 0.8620913617666162 - name: Accuracy type: accuracy value: 0.9463553826199741 --- # CNEC_1_1_robeczech-base This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2802 - Precision: 0.8458 - Recall: 0.8790 - F1: 0.8621 - Accuracy: 0.9464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7893 | 6.8 | 1000 | 0.5640 | 0.5842 | 0.4671 | 0.5191 | 0.8830 | | 0.3629 | 13.61 | 2000 | 0.3352 | 0.7879 | 0.8035 | 0.7956 | 0.9299 | | 0.2227 | 20.41 | 3000 | 0.2793 | 0.8264 | 0.8490 | 0.8375 | 0.9437 | | 0.1577 | 27.21 | 4000 | 0.2646 | 0.8495 | 0.8649 | 0.8571 | 0.9477 | | 0.1193 | 34.01 | 5000 | 0.2713 | 0.8491 | 0.8720 | 0.8604 | 0.9478 | | 0.0947 | 40.82 | 6000 | 0.2670 | 0.8560 | 0.8742 | 0.8650 | 0.9494 | | 0.0792 | 47.62 | 7000 | 0.2791 | 0.8551 | 0.8804 | 0.8675 | 0.9479 | | 0.0706 | 54.42 | 8000 | 0.2802 | 0.8458 | 0.8790 | 0.8621 | 0.9464 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0