stupidog04 commited on
Commit
702d195
·
1 Parent(s): 2b668f2

Create pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +46 -0
pipeline.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from typing import Dict
3
+
4
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
5
+ from pyctcdecode import Alphabet, BeamSearchDecoderCTC
6
+
7
+ class PreTrainedPipeline():
8
+ def __init__(self, path):
9
+ """
10
+ Initialize model
11
+ """
12
+ self.processor = Wav2Vec2Processor.from_pretrained(path)
13
+ self.model = Wav2Vec2ForCTC.from_pretrained(path)
14
+ vocab_list = list(self.processor.tokenizer.get_vocab().keys())
15
+
16
+ # convert ctc blank character representation
17
+ vocab_list[0] = ""
18
+
19
+ # replace special characters
20
+ vocab_list[1] = "⁇"
21
+ vocab_list[2] = "⁇"
22
+ vocab_list[3] = "⁇"
23
+
24
+ # convert space character representation
25
+ vocab_list[4] = " "
26
+
27
+ alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=0)
28
+
29
+ self.decoder = BeamSearchDecoderCTC(alphabet)
30
+ self.sampling_rate = 16000
31
+
32
+
33
+ def __call__(self, inputs)-> Dict[str, str]:
34
+ """
35
+ Args:
36
+ inputs (:obj:`np.array`):
37
+ The raw waveform of audio received. By default at 16KHz.
38
+ Return:
39
+ A :obj:`dict`:. The object return should be liked {"text": "XXX"} containing
40
+ the detected text from the input audio.
41
+ """
42
+ input_values = self.processor(inputs, return_tensors="pt", sampling_rate=self.sampling_rate).input_values # Batch size 1
43
+ logits = self.model(input_values).logits.cpu().detach().numpy()[0]
44
+ return {
45
+ "text": self.decoder.decode(logits)
46
+ }