--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_16_e4 results: [] --- # exper_batch_16_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3598 - Accuracy: 0.9059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7606 | 0.16 | 100 | 3.7839 | 0.1989 | | 3.1072 | 0.31 | 200 | 3.0251 | 0.3285 | | 2.4068 | 0.47 | 300 | 2.4380 | 0.4719 | | 2.0881 | 0.63 | 400 | 2.0489 | 0.5412 | | 1.6817 | 0.78 | 500 | 1.7968 | 0.6025 | | 1.342 | 0.94 | 600 | 1.5044 | 0.6249 | | 0.9343 | 1.1 | 700 | 1.1881 | 0.7132 | | 0.9552 | 1.25 | 800 | 1.1064 | 0.7224 | | 0.7265 | 1.41 | 900 | 0.9189 | 0.7768 | | 0.6732 | 1.56 | 1000 | 0.9227 | 0.7606 | | 0.5587 | 1.72 | 1100 | 0.7912 | 0.7903 | | 0.6332 | 1.88 | 1200 | 0.7606 | 0.7945 | | 0.3188 | 2.03 | 1300 | 0.6535 | 0.8288 | | 0.3079 | 2.19 | 1400 | 0.5686 | 0.8577 | | 0.2518 | 2.35 | 1500 | 0.5517 | 0.8577 | | 0.2 | 2.5 | 1600 | 0.5277 | 0.8631 | | 0.2032 | 2.66 | 1700 | 0.4841 | 0.8701 | | 0.1555 | 2.82 | 1800 | 0.4578 | 0.8793 | | 0.145 | 2.97 | 1900 | 0.4466 | 0.8755 | | 0.0985 | 3.13 | 2000 | 0.4249 | 0.8867 | | 0.0955 | 3.29 | 2100 | 0.3977 | 0.8932 | | 0.0438 | 3.44 | 2200 | 0.3785 | 0.9036 | | 0.0589 | 3.6 | 2300 | 0.3717 | 0.9017 | | 0.0709 | 3.76 | 2400 | 0.3609 | 0.9052 | | 0.0706 | 3.91 | 2500 | 0.3598 | 0.9059 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1