File size: 4,621 Bytes
d45eea6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.models import Sequential, load_model
from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional
import keras
import os
import banglanltk as bn
# Load the dataset
data = pd.read_excel("b-nersuzi.xlsx", sheet_name="b-ner")
# Check for and handle missing values
data = data.fillna(method='ffill')
# Group the data by sentence and collect word-tag pairs
agg_func = lambda s: [(w, t) for w, t in zip(s["Word"].values.tolist(), s['Tag'].values.tolist())]
agg_data = data.groupby(['Sentence #']).apply(agg_func).reset_index().rename(columns={0:'Sentence_POS_Tag_Pair'})
# Define a function to preprocess the data
def preprocess_data(data):
data['Sentence'] = data['Sentence_POS_Tag_Pair'].apply(lambda sentence: " ".join(map(str, [s[0] for s in sentence])))
data['Tag'] = data['Sentence_POS_Tag_Pair'].apply(lambda sentence: " ".join(map(str, [s[1] for s in sentence])))
data['tokenised_sentences'] = data['Sentence'].apply(bn.word_tokenize)
data['tag_list'] = data['Tag'].apply(lambda x: x.split())
return data
# Preprocess the data
agg_data = preprocess_data(agg_data)
# Separate sentences and tags
tokenized_sentences = agg_data['tokenised_sentences'].tolist()
tags_list = agg_data['tag_list'].tolist()
# Create word-to-index and tag-to-index mappings
words = set(word for sent in tokenized_sentences for word in sent)
word_to_idx = {word: i + 1 for i, word in enumerate(words)}
num_words = len(words) + 1 # Add 1 for padding
tags = set(tag for tag_list in tags_list for tag in tag_list)
tag_to_idx = {tag: i for i, tag in enumerate(tags)}
num_tags = len(tags)
# Encode sentences and tags
max_len = max(len(sent) for sent in tokenized_sentences)
encoded_sentences = [[word_to_idx[word] for word in sent] for sent in tokenized_sentences]
encoded_sentences = pad_sequences(encoded_sentences, maxlen=max_len, padding='post')
encoded_tags = [[tag_to_idx[tag] for tag in tag_list] for tag_list in tags_list]
encoded_tags = pad_sequences(encoded_tags, maxlen=max_len, padding='post')
encoded_tags = [to_categorical(tag, num_classes=num_tags) for tag in encoded_tags]
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(encoded_sentences, encoded_tags, test_size=0.2, random_state=42)
# Define the LSTM model
model_path = "best_model.h5"
if os.path.exists(model_path):
model = load_model(model_path)
else:
model = Sequential()
model.add(Embedding(input_dim=num_words, output_dim=50, input_length=max_len))
model.add(Bidirectional(LSTM(units=100, return_sequences=True)))
model.add(TimeDistributed(Dense(units=num_tags, activation='softmax')))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Define callback to save the model when validation accuracy reaches 99% or above
class SaveModelCallback(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if logs.get('val_accuracy') >= 0.99:
self.model.save("best_model.h5")
print("\nValidation accuracy reached 99% or above. Model saved.")
# Train the model
history = model.fit(X_train, np.array(y_train), batch_size=32, epochs=7, validation_split=0.1, callbacks=[SaveModelCallback()])
# Evaluate the model
loss, accuracy = model.evaluate(X_test, np.array(y_test))
print("Test Loss:", loss)
print("Test Accuracy:", accuracy)
# Function to predict entities in a given sentence
def predict_entities(input_sentence):
tokenized_input = bn.word_tokenize(input_sentence)
encoded_input = [word_to_idx[word] if word in word_to_idx else 0 for word in tokenized_input]
padded_input = pad_sequences([encoded_input], maxlen=max_len, padding='post')
predictions = model.predict(padded_input)
predicted_tags = np.argmax(predictions, axis=-1)
reverse_tag_map = {v: k for k, v in tag_to_idx.items()}
predicted_tags = [reverse_tag_map[idx] for idx in predicted_tags[0][:len(tokenized_input)]]
tagged_sentence = [(word, tag) for word, tag in zip(tokenized_input, predicted_tags)]
return tagged_sentence
# Test user input
user_input = input("Enter a Bengali sentence: ")
predicted_tags = predict_entities(user_input)
for word, tag in predicted_tags:
print(f"{word}: {tag}") |