Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +202 -0
- adapter_config.json +380 -0
- adapter_model.safetensors +3 -0
- checkpoint-4400/README.md +202 -0
- checkpoint-4400/adapter_config.json +380 -0
- checkpoint-4400/adapter_model.safetensors +3 -0
- checkpoint-4400/latest +1 -0
- checkpoint-4400/qwen.tiktoken +0 -0
- checkpoint-4400/rng_state_0.pth +3 -0
- checkpoint-4400/rng_state_1.pth +3 -0
- checkpoint-4400/rng_state_2.pth +3 -0
- checkpoint-4400/rng_state_3.pth +3 -0
- checkpoint-4400/scheduler.pt +3 -0
- checkpoint-4400/special_tokens_map.json +3 -0
- checkpoint-4400/tokenizer_config.json +14 -0
- checkpoint-4400/trainer_state.json +3113 -0
- checkpoint-4400/training_args.bin +3 -0
- checkpoint-4400/zero_to_fp32.py +587 -0
- checkpoint-4800/README.md +202 -0
- checkpoint-4800/adapter_config.json +380 -0
- checkpoint-4800/adapter_model.safetensors +3 -0
- checkpoint-4800/latest +1 -0
- checkpoint-4800/qwen.tiktoken +0 -0
- checkpoint-4800/rng_state_0.pth +3 -0
- checkpoint-4800/rng_state_1.pth +3 -0
- checkpoint-4800/rng_state_2.pth +3 -0
- checkpoint-4800/rng_state_3.pth +3 -0
- checkpoint-4800/scheduler.pt +3 -0
- checkpoint-4800/special_tokens_map.json +3 -0
- checkpoint-4800/tokenizer_config.json +14 -0
- checkpoint-4800/trainer_state.json +3393 -0
- checkpoint-4800/training_args.bin +3 -0
- checkpoint-4800/zero_to_fp32.py +587 -0
- checkpoint-5200/README.md +202 -0
- checkpoint-5200/adapter_config.json +380 -0
- checkpoint-5200/adapter_model.safetensors +3 -0
- checkpoint-5200/latest +1 -0
- checkpoint-5200/qwen.tiktoken +0 -0
- checkpoint-5200/rng_state_0.pth +3 -0
- checkpoint-5200/rng_state_1.pth +3 -0
- checkpoint-5200/rng_state_2.pth +3 -0
- checkpoint-5200/rng_state_3.pth +3 -0
- checkpoint-5200/scheduler.pt +3 -0
- checkpoint-5200/special_tokens_map.json +3 -0
- checkpoint-5200/tokenizer_config.json +14 -0
- checkpoint-5200/trainer_state.json +3673 -0
- checkpoint-5200/training_args.bin +3 -0
- checkpoint-5200/zero_to_fp32.py +587 -0
- checkpoint-5600/README.md +202 -0
- checkpoint-5600/adapter_config.json +380 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bf2ed17d9f088fc91b7cdfef65da34ea8cfd20d76095cc5795cf55bef45e819
|
3 |
+
size 469105640
|
checkpoint-4400/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-4400/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-4400/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751af54c1ff19d3f774d1685d31a8d2ab54dfdc2ba4c2498ae502d9bc75ca8a6
|
3 |
+
size 469105640
|
checkpoint-4400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4400
|
checkpoint-4400/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-4400/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afdc8baf10005717949783a4a1207b66f7828c4b2fd0eb1e3b56c703fa47ba54
|
3 |
+
size 14960
|
checkpoint-4400/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa39033a383b1a067937f0df08269a60e95fd76479e611608400a19835a4a364
|
3 |
+
size 14960
|
checkpoint-4400/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8902104696ee6d1bc20d4289c859e79154abb078495de01ee5a40a8a79f5be82
|
3 |
+
size 14960
|
checkpoint-4400/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31839305375151f4fea01457b866dc1cec33a5cb8f37ed931f805cf365d8ed3a
|
3 |
+
size 14960
|
checkpoint-4400/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:680d64a4d4e2212c9f035797b6d41b624aa3d364e3795c287e059fc0201c6c76
|
3 |
+
size 1064
|
checkpoint-4400/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-4400/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-4400/trainer_state.json
ADDED
@@ -0,0 +1,3113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.586881856680783,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.16139251058721532,
|
853 |
+
"grad_norm": 2.347985877636318,
|
854 |
+
"learning_rate": 2.8301985044857947e-05,
|
855 |
+
"loss": 0.7199,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.16272633298876255,
|
860 |
+
"grad_norm": 2.2534314586033113,
|
861 |
+
"learning_rate": 2.8272522724749743e-05,
|
862 |
+
"loss": 0.6835,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.16406015539030977,
|
867 |
+
"grad_norm": 3.159583116387406,
|
868 |
+
"learning_rate": 2.8242822605285323e-05,
|
869 |
+
"loss": 0.7122,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.16539397779185702,
|
874 |
+
"grad_norm": 2.086588782887239,
|
875 |
+
"learning_rate": 2.8212885218591812e-05,
|
876 |
+
"loss": 0.6949,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16672780019340425,
|
881 |
+
"grad_norm": 7.284236966547317,
|
882 |
+
"learning_rate": 2.8182711101047362e-05,
|
883 |
+
"loss": 0.6641,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16806162259495147,
|
888 |
+
"grad_norm": 3.0369619450249594,
|
889 |
+
"learning_rate": 2.815230079327156e-05,
|
890 |
+
"loss": 0.6731,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16939544499649872,
|
895 |
+
"grad_norm": 1.4144726574636068,
|
896 |
+
"learning_rate": 2.8121654840115734e-05,
|
897 |
+
"loss": 0.6898,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.17072926739804595,
|
902 |
+
"grad_norm": 3.66202356670303,
|
903 |
+
"learning_rate": 2.809077379065319e-05,
|
904 |
+
"loss": 0.7174,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.17206308979959317,
|
909 |
+
"grad_norm": 4.778073521019285,
|
910 |
+
"learning_rate": 2.805965819816937e-05,
|
911 |
+
"loss": 0.6186,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.17339691220114042,
|
916 |
+
"grad_norm": 3.9620427201734576,
|
917 |
+
"learning_rate": 2.802830862015196e-05,
|
918 |
+
"loss": 0.684,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.17473073460268765,
|
923 |
+
"grad_norm": 4.170199740083487,
|
924 |
+
"learning_rate": 2.799672561828087e-05,
|
925 |
+
"loss": 0.7102,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.17606455700423487,
|
930 |
+
"grad_norm": 2.2612205048804714,
|
931 |
+
"learning_rate": 2.79649097584182e-05,
|
932 |
+
"loss": 0.7451,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17739837940578213,
|
937 |
+
"grad_norm": 1.7156828128822517,
|
938 |
+
"learning_rate": 2.7932861610598077e-05,
|
939 |
+
"loss": 0.6641,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17873220180732935,
|
944 |
+
"grad_norm": 7.960733847217257,
|
945 |
+
"learning_rate": 2.7900581749016466e-05,
|
946 |
+
"loss": 0.7365,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1800660242088766,
|
951 |
+
"grad_norm": 2.5364939682563756,
|
952 |
+
"learning_rate": 2.7868070752020865e-05,
|
953 |
+
"loss": 0.7078,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.18139984661042383,
|
958 |
+
"grad_norm": 2.7446281678776137,
|
959 |
+
"learning_rate": 2.7835329202099944e-05,
|
960 |
+
"loss": 0.7214,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.18273366901197105,
|
965 |
+
"grad_norm": 3.2416602016145886,
|
966 |
+
"learning_rate": 2.7802357685873117e-05,
|
967 |
+
"loss": 0.6757,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1840674914135183,
|
972 |
+
"grad_norm": 5.225459736579946,
|
973 |
+
"learning_rate": 2.7769156794080033e-05,
|
974 |
+
"loss": 0.7381,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.18540131381506553,
|
979 |
+
"grad_norm": 5.176692689501482,
|
980 |
+
"learning_rate": 2.7735727121569967e-05,
|
981 |
+
"loss": 0.7354,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.18673513621661275,
|
986 |
+
"grad_norm": 2.7441883232342574,
|
987 |
+
"learning_rate": 2.770206926729121e-05,
|
988 |
+
"loss": 0.6937,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.18806895861816,
|
993 |
+
"grad_norm": 2.9792116246243525,
|
994 |
+
"learning_rate": 2.7668183834280284e-05,
|
995 |
+
"loss": 0.6641,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.18940278101970723,
|
1000 |
+
"grad_norm": 2.4645298487410723,
|
1001 |
+
"learning_rate": 2.763407142965117e-05,
|
1002 |
+
"loss": 0.6274,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.19073660342125445,
|
1007 |
+
"grad_norm": 7.245032878035033,
|
1008 |
+
"learning_rate": 2.759973266458444e-05,
|
1009 |
+
"loss": 0.6962,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1920704258228017,
|
1014 |
+
"grad_norm": 5.642209662597534,
|
1015 |
+
"learning_rate": 2.756516815431627e-05,
|
1016 |
+
"loss": 0.7016,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.19340424822434893,
|
1021 |
+
"grad_norm": 2.9804981875184526,
|
1022 |
+
"learning_rate": 2.7530378518127445e-05,
|
1023 |
+
"loss": 0.7331,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.19473807062589615,
|
1028 |
+
"grad_norm": 7.496561660992361,
|
1029 |
+
"learning_rate": 2.7495364379332256e-05,
|
1030 |
+
"loss": 0.7234,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.1960718930274434,
|
1035 |
+
"grad_norm": 1.6139389803246291,
|
1036 |
+
"learning_rate": 2.7460126365267335e-05,
|
1037 |
+
"loss": 0.7013,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.19740571542899063,
|
1042 |
+
"grad_norm": 4.618678334755141,
|
1043 |
+
"learning_rate": 2.7424665107280402e-05,
|
1044 |
+
"loss": 0.6892,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19873953783053785,
|
1049 |
+
"grad_norm": 15.494190234738744,
|
1050 |
+
"learning_rate": 2.738898124071898e-05,
|
1051 |
+
"loss": 0.6785,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2000733602320851,
|
1056 |
+
"grad_norm": 3.1680363319798954,
|
1057 |
+
"learning_rate": 2.735307540491898e-05,
|
1058 |
+
"loss": 0.669,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.20140718263363233,
|
1063 |
+
"grad_norm": 2.5397562341036224,
|
1064 |
+
"learning_rate": 2.7316948243193273e-05,
|
1065 |
+
"loss": 0.6726,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.20274100503517956,
|
1070 |
+
"grad_norm": 4.139021422606072,
|
1071 |
+
"learning_rate": 2.7280600402820146e-05,
|
1072 |
+
"loss": 0.6706,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2040748274367268,
|
1077 |
+
"grad_norm": 2.7422468825646065,
|
1078 |
+
"learning_rate": 2.724403253503171e-05,
|
1079 |
+
"loss": 0.7078,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.20540864983827403,
|
1084 |
+
"grad_norm": 2.744225768808104,
|
1085 |
+
"learning_rate": 2.7207245295002242e-05,
|
1086 |
+
"loss": 0.6821,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.20674247223982126,
|
1091 |
+
"grad_norm": 2.234040668790152,
|
1092 |
+
"learning_rate": 2.7170239341836436e-05,
|
1093 |
+
"loss": 0.7451,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.2080762946413685,
|
1098 |
+
"grad_norm": 2.531733996425376,
|
1099 |
+
"learning_rate": 2.7133015338557585e-05,
|
1100 |
+
"loss": 0.7205,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20941011704291573,
|
1105 |
+
"grad_norm": 2.9772483856455616,
|
1106 |
+
"learning_rate": 2.7095573952095727e-05,
|
1107 |
+
"loss": 0.7274,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.21074393944446296,
|
1112 |
+
"grad_norm": 3.317235333047955,
|
1113 |
+
"learning_rate": 2.705791585327568e-05,
|
1114 |
+
"loss": 0.7309,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2120777618460102,
|
1119 |
+
"grad_norm": 1.9652386793628944,
|
1120 |
+
"learning_rate": 2.7020041716805014e-05,
|
1121 |
+
"loss": 0.7157,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.21341158424755743,
|
1126 |
+
"grad_norm": 2.93724058913164,
|
1127 |
+
"learning_rate": 2.6981952221261986e-05,
|
1128 |
+
"loss": 0.7123,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.21474540664910466,
|
1133 |
+
"grad_norm": 6.395577225750395,
|
1134 |
+
"learning_rate": 2.6943648049083366e-05,
|
1135 |
+
"loss": 0.6991,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2160792290506519,
|
1140 |
+
"grad_norm": 2.4292347967714973,
|
1141 |
+
"learning_rate": 2.6905129886552208e-05,
|
1142 |
+
"loss": 0.7004,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.21741305145219914,
|
1147 |
+
"grad_norm": 1.8304810950546353,
|
1148 |
+
"learning_rate": 2.6866398423785568e-05,
|
1149 |
+
"loss": 0.6941,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.2187468738537464,
|
1154 |
+
"grad_norm": 2.762870839632077,
|
1155 |
+
"learning_rate": 2.682745435472212e-05,
|
1156 |
+
"loss": 0.6928,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.2200806962552936,
|
1161 |
+
"grad_norm": 3.4172019229090917,
|
1162 |
+
"learning_rate": 2.6788298377109748e-05,
|
1163 |
+
"loss": 0.7344,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.22141451865684084,
|
1168 |
+
"grad_norm": 2.7483538989548175,
|
1169 |
+
"learning_rate": 2.6748931192493017e-05,
|
1170 |
+
"loss": 0.7367,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.2227483410583881,
|
1175 |
+
"grad_norm": 7.314729269236597,
|
1176 |
+
"learning_rate": 2.670935350620063e-05,
|
1177 |
+
"loss": 0.6849,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.2240821634599353,
|
1182 |
+
"grad_norm": 3.8688065039432527,
|
1183 |
+
"learning_rate": 2.6669566027332767e-05,
|
1184 |
+
"loss": 0.6812,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.22541598586148254,
|
1189 |
+
"grad_norm": 7.10517346658295,
|
1190 |
+
"learning_rate": 2.6629569468748404e-05,
|
1191 |
+
"loss": 0.6089,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2267498082630298,
|
1196 |
+
"grad_norm": 2.4198822683275147,
|
1197 |
+
"learning_rate": 2.658936454705251e-05,
|
1198 |
+
"loss": 0.6666,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.22808363066457701,
|
1203 |
+
"grad_norm": 2.4915285584652054,
|
1204 |
+
"learning_rate": 2.6548951982583246e-05,
|
1205 |
+
"loss": 0.7088,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.22941745306612424,
|
1210 |
+
"grad_norm": 2.2849831540010537,
|
1211 |
+
"learning_rate": 2.650833249939903e-05,
|
1212 |
+
"loss": 0.7149,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.2307512754676715,
|
1217 |
+
"grad_norm": 1.5098088938051029,
|
1218 |
+
"learning_rate": 2.6467506825265573e-05,
|
1219 |
+
"loss": 0.7254,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.23208509786921871,
|
1224 |
+
"grad_norm": 3.4800248296443814,
|
1225 |
+
"learning_rate": 2.642647569164284e-05,
|
1226 |
+
"loss": 0.6916,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.23341892027076594,
|
1231 |
+
"grad_norm": 7.281500947090542,
|
1232 |
+
"learning_rate": 2.638523983367194e-05,
|
1233 |
+
"loss": 0.6831,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2347527426723132,
|
1238 |
+
"grad_norm": 3.0161864395495446,
|
1239 |
+
"learning_rate": 2.634379999016198e-05,
|
1240 |
+
"loss": 0.6999,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.23608656507386042,
|
1245 |
+
"grad_norm": 2.0917745352156762,
|
1246 |
+
"learning_rate": 2.6302156903576784e-05,
|
1247 |
+
"loss": 0.7112,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.23742038747540764,
|
1252 |
+
"grad_norm": 1.918811185774526,
|
1253 |
+
"learning_rate": 2.6260311320021628e-05,
|
1254 |
+
"loss": 0.6725,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.2387542098769549,
|
1259 |
+
"grad_norm": 3.0697413876733695,
|
1260 |
+
"learning_rate": 2.6218263989229855e-05,
|
1261 |
+
"loss": 0.7133,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.24008803227850212,
|
1266 |
+
"grad_norm": 6.14274393655379,
|
1267 |
+
"learning_rate": 2.617601566454944e-05,
|
1268 |
+
"loss": 0.6678,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.24142185468004934,
|
1273 |
+
"grad_norm": 4.259979200715344,
|
1274 |
+
"learning_rate": 2.613356710292951e-05,
|
1275 |
+
"loss": 0.7013,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.2427556770815966,
|
1280 |
+
"grad_norm": 3.1011058557692808,
|
1281 |
+
"learning_rate": 2.6090919064906766e-05,
|
1282 |
+
"loss": 0.7027,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.24408949948314382,
|
1287 |
+
"grad_norm": 3.677900978078831,
|
1288 |
+
"learning_rate": 2.6048072314591854e-05,
|
1289 |
+
"loss": 0.711,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.24542332188469104,
|
1294 |
+
"grad_norm": 2.368576699713982,
|
1295 |
+
"learning_rate": 2.600502761965569e-05,
|
1296 |
+
"loss": 0.6917,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.2467571442862383,
|
1301 |
+
"grad_norm": 3.0346306894457,
|
1302 |
+
"learning_rate": 2.59617857513157e-05,
|
1303 |
+
"loss": 0.69,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.24809096668778552,
|
1308 |
+
"grad_norm": 3.1228131080916204,
|
1309 |
+
"learning_rate": 2.591834748432198e-05,
|
1310 |
+
"loss": 0.695,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.24942478908933274,
|
1315 |
+
"grad_norm": 2.6886660685401034,
|
1316 |
+
"learning_rate": 2.5874713596943465e-05,
|
1317 |
+
"loss": 0.6681,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.25075861149087997,
|
1322 |
+
"grad_norm": 1.7244460999561722,
|
1323 |
+
"learning_rate": 2.5830884870953933e-05,
|
1324 |
+
"loss": 0.6737,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.25209243389242725,
|
1329 |
+
"grad_norm": 2.4283725332509842,
|
1330 |
+
"learning_rate": 2.578686209161803e-05,
|
1331 |
+
"loss": 0.6598,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.2534262562939745,
|
1336 |
+
"grad_norm": 5.496556851547161,
|
1337 |
+
"learning_rate": 2.5742646047677186e-05,
|
1338 |
+
"loss": 0.6931,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2547600786955217,
|
1343 |
+
"grad_norm": 1.2751270156124934,
|
1344 |
+
"learning_rate": 2.5698237531335493e-05,
|
1345 |
+
"loss": 0.7043,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.2560939010970689,
|
1350 |
+
"grad_norm": 8.807017683974516,
|
1351 |
+
"learning_rate": 2.56536373382455e-05,
|
1352 |
+
"loss": 0.6234,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.25742772349861615,
|
1357 |
+
"grad_norm": 3.6331868296726277,
|
1358 |
+
"learning_rate": 2.5608846267493974e-05,
|
1359 |
+
"loss": 0.6763,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.25876154590016337,
|
1364 |
+
"grad_norm": 5.094905230807839,
|
1365 |
+
"learning_rate": 2.5563865121587563e-05,
|
1366 |
+
"loss": 0.6692,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.26009536830171065,
|
1371 |
+
"grad_norm": 2.0520732769663237,
|
1372 |
+
"learning_rate": 2.5518694706438445e-05,
|
1373 |
+
"loss": 0.7008,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2614291907032579,
|
1378 |
+
"grad_norm": 2.1265138955486336,
|
1379 |
+
"learning_rate": 2.5473335831349842e-05,
|
1380 |
+
"loss": 0.6623,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2627630131048051,
|
1385 |
+
"grad_norm": 4.532469697105077,
|
1386 |
+
"learning_rate": 2.5427789309001577e-05,
|
1387 |
+
"loss": 0.7099,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2640968355063523,
|
1392 |
+
"grad_norm": 1.8912900905557881,
|
1393 |
+
"learning_rate": 2.538205595543548e-05,
|
1394 |
+
"loss": 0.712,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.26543065790789955,
|
1399 |
+
"grad_norm": 9.714825687307293,
|
1400 |
+
"learning_rate": 2.5336136590040767e-05,
|
1401 |
+
"loss": 0.6418,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.26676448030944677,
|
1406 |
+
"grad_norm": 4.375615975749738,
|
1407 |
+
"learning_rate": 2.529003203553937e-05,
|
1408 |
+
"loss": 0.6933,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.26809830271099405,
|
1413 |
+
"grad_norm": 5.945657366701919,
|
1414 |
+
"learning_rate": 2.5243743117971186e-05,
|
1415 |
+
"loss": 0.6748,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2694321251125413,
|
1420 |
+
"grad_norm": 7.453951551881255,
|
1421 |
+
"learning_rate": 2.5197270666679295e-05,
|
1422 |
+
"loss": 0.7004,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2707659475140885,
|
1427 |
+
"grad_norm": 2.3916662603858665,
|
1428 |
+
"learning_rate": 2.515061551429509e-05,
|
1429 |
+
"loss": 0.6961,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2720997699156357,
|
1434 |
+
"grad_norm": 3.5972047868369104,
|
1435 |
+
"learning_rate": 2.5103778496723334e-05,
|
1436 |
+
"loss": 0.7058,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.27343359231718295,
|
1441 |
+
"grad_norm": 4.525268184238612,
|
1442 |
+
"learning_rate": 2.5056760453127242e-05,
|
1443 |
+
"loss": 0.6704,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.2747674147187302,
|
1448 |
+
"grad_norm": 5.9581146555788465,
|
1449 |
+
"learning_rate": 2.5009562225913385e-05,
|
1450 |
+
"loss": 0.6722,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.27610123712027745,
|
1455 |
+
"grad_norm": 4.163590223716233,
|
1456 |
+
"learning_rate": 2.4962184660716645e-05,
|
1457 |
+
"loss": 0.6933,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.2774350595218247,
|
1462 |
+
"grad_norm": 2.0180801697563258,
|
1463 |
+
"learning_rate": 2.4914628606385022e-05,
|
1464 |
+
"loss": 0.6982,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.2787688819233719,
|
1469 |
+
"grad_norm": 2.3996169579330373,
|
1470 |
+
"learning_rate": 2.4866894914964462e-05,
|
1471 |
+
"loss": 0.6832,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.2801027043249191,
|
1476 |
+
"grad_norm": 20.07054133895426,
|
1477 |
+
"learning_rate": 2.481898444168357e-05,
|
1478 |
+
"loss": 0.6871,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.28143652672646635,
|
1483 |
+
"grad_norm": 3.563765719247629,
|
1484 |
+
"learning_rate": 2.4770898044938284e-05,
|
1485 |
+
"loss": 0.703,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.28277034912801363,
|
1490 |
+
"grad_norm": 1.9816905810381245,
|
1491 |
+
"learning_rate": 2.4722636586276522e-05,
|
1492 |
+
"loss": 0.7132,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.28410417152956086,
|
1497 |
+
"grad_norm": 4.0053115388283205,
|
1498 |
+
"learning_rate": 2.4674200930382712e-05,
|
1499 |
+
"loss": 0.6991,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.2854379939311081,
|
1504 |
+
"grad_norm": 1.9643538302216321,
|
1505 |
+
"learning_rate": 2.4625591945062326e-05,
|
1506 |
+
"loss": 0.7182,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.2867718163326553,
|
1511 |
+
"grad_norm": 1.7027289253737494,
|
1512 |
+
"learning_rate": 2.4576810501226318e-05,
|
1513 |
+
"loss": 0.6856,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.28810563873420253,
|
1518 |
+
"grad_norm": 3.394597130806682,
|
1519 |
+
"learning_rate": 2.4527857472875515e-05,
|
1520 |
+
"loss": 0.7013,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.28943946113574975,
|
1525 |
+
"grad_norm": 2.766786923916393,
|
1526 |
+
"learning_rate": 2.447873373708498e-05,
|
1527 |
+
"loss": 0.6913,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.29077328353729703,
|
1532 |
+
"grad_norm": 6.781532105937228,
|
1533 |
+
"learning_rate": 2.4429440173988275e-05,
|
1534 |
+
"loss": 0.7401,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.29210710593884426,
|
1539 |
+
"grad_norm": 2.6220209383444946,
|
1540 |
+
"learning_rate": 2.43799776667617e-05,
|
1541 |
+
"loss": 0.7287,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.2934409283403915,
|
1546 |
+
"grad_norm": 4.597566226152422,
|
1547 |
+
"learning_rate": 2.4330347101608492e-05,
|
1548 |
+
"loss": 0.6664,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.2947747507419387,
|
1553 |
+
"grad_norm": 3.15622915128866,
|
1554 |
+
"learning_rate": 2.428054936774289e-05,
|
1555 |
+
"loss": 0.6757,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.29610857314348593,
|
1560 |
+
"grad_norm": 3.5777836932521065,
|
1561 |
+
"learning_rate": 2.423058535737427e-05,
|
1562 |
+
"loss": 0.7396,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.29744239554503316,
|
1567 |
+
"grad_norm": 2.505384749600403,
|
1568 |
+
"learning_rate": 2.418045596569111e-05,
|
1569 |
+
"loss": 0.7156,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.29877621794658044,
|
1574 |
+
"grad_norm": 15.640998645324629,
|
1575 |
+
"learning_rate": 2.4130162090844976e-05,
|
1576 |
+
"loss": 0.7016,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.30011004034812766,
|
1581 |
+
"grad_norm": 6.1147200283733865,
|
1582 |
+
"learning_rate": 2.4079704633934427e-05,
|
1583 |
+
"loss": 0.6835,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.3014438627496749,
|
1588 |
+
"grad_norm": 2.4704828096249907,
|
1589 |
+
"learning_rate": 2.4029084498988864e-05,
|
1590 |
+
"loss": 0.717,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.3027776851512221,
|
1595 |
+
"grad_norm": 3.624817679194012,
|
1596 |
+
"learning_rate": 2.3978302592952332e-05,
|
1597 |
+
"loss": 0.6863,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.30411150755276933,
|
1602 |
+
"grad_norm": 7.1778372122735155,
|
1603 |
+
"learning_rate": 2.392735982566728e-05,
|
1604 |
+
"loss": 0.7057,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.30544532995431656,
|
1609 |
+
"grad_norm": 1.541203747230883,
|
1610 |
+
"learning_rate": 2.387625710985826e-05,
|
1611 |
+
"loss": 0.6755,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.30677915235586384,
|
1616 |
+
"grad_norm": 5.290753363343769,
|
1617 |
+
"learning_rate": 2.3824995361115552e-05,
|
1618 |
+
"loss": 0.7214,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.30811297475741106,
|
1623 |
+
"grad_norm": 11.18524078914846,
|
1624 |
+
"learning_rate": 2.3773575497878784e-05,
|
1625 |
+
"loss": 0.687,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.3094467971589583,
|
1630 |
+
"grad_norm": 2.8473409260968854,
|
1631 |
+
"learning_rate": 2.372199844142048e-05,
|
1632 |
+
"loss": 0.6588,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.3107806195605055,
|
1637 |
+
"grad_norm": 3.6509202763742894,
|
1638 |
+
"learning_rate": 2.3670265115829523e-05,
|
1639 |
+
"loss": 0.7146,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.31211444196205274,
|
1644 |
+
"grad_norm": 2.86323212169014,
|
1645 |
+
"learning_rate": 2.3618376447994633e-05,
|
1646 |
+
"loss": 0.6965,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.31344826436359996,
|
1651 |
+
"grad_norm": 1.6724444694024563,
|
1652 |
+
"learning_rate": 2.3566333367587737e-05,
|
1653 |
+
"loss": 0.6827,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.31478208676514724,
|
1658 |
+
"grad_norm": 3.7438462947121876,
|
1659 |
+
"learning_rate": 2.3514136807047318e-05,
|
1660 |
+
"loss": 0.677,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.31611590916669446,
|
1665 |
+
"grad_norm": 3.150319939971515,
|
1666 |
+
"learning_rate": 2.3461787701561724e-05,
|
1667 |
+
"loss": 0.6926,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.3174497315682417,
|
1672 |
+
"grad_norm": 1.9724696911512674,
|
1673 |
+
"learning_rate": 2.340928698905239e-05,
|
1674 |
+
"loss": 0.7269,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.3187835539697889,
|
1679 |
+
"grad_norm": 2.6615995505256604,
|
1680 |
+
"learning_rate": 2.335663561015704e-05,
|
1681 |
+
"loss": 0.719,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.32011737637133614,
|
1686 |
+
"grad_norm": 3.648818329043563,
|
1687 |
+
"learning_rate": 2.3303834508212845e-05,
|
1688 |
+
"loss": 0.6593,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.3214511987728834,
|
1693 |
+
"grad_norm": 5.032935766388129,
|
1694 |
+
"learning_rate": 2.325088462923951e-05,
|
1695 |
+
"loss": 0.7018,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.32278502117443064,
|
1700 |
+
"grad_norm": 5.116190153583237,
|
1701 |
+
"learning_rate": 2.319778692192233e-05,
|
1702 |
+
"loss": 0.6138,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.32411884357597787,
|
1707 |
+
"grad_norm": 8.77553429349065,
|
1708 |
+
"learning_rate": 2.3144542337595196e-05,
|
1709 |
+
"loss": 0.6995,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.3254526659775251,
|
1714 |
+
"grad_norm": 4.020402137418298,
|
1715 |
+
"learning_rate": 2.3091151830223537e-05,
|
1716 |
+
"loss": 0.6935,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.3267864883790723,
|
1721 |
+
"grad_norm": 2.326990350307363,
|
1722 |
+
"learning_rate": 2.3037616356387237e-05,
|
1723 |
+
"loss": 0.6657,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.32812031078061954,
|
1728 |
+
"grad_norm": 1.9450305290081706,
|
1729 |
+
"learning_rate": 2.2983936875263495e-05,
|
1730 |
+
"loss": 0.6884,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.3294541331821668,
|
1735 |
+
"grad_norm": 2.4083218262957407,
|
1736 |
+
"learning_rate": 2.2930114348609655e-05,
|
1737 |
+
"loss": 0.6324,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.33078795558371404,
|
1742 |
+
"grad_norm": 4.469293094525185,
|
1743 |
+
"learning_rate": 2.2876149740745935e-05,
|
1744 |
+
"loss": 0.7054,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.33212177798526127,
|
1749 |
+
"grad_norm": 3.0408327884382613,
|
1750 |
+
"learning_rate": 2.28220440185382e-05,
|
1751 |
+
"loss": 0.6996,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.3334556003868085,
|
1756 |
+
"grad_norm": 2.5340984000691273,
|
1757 |
+
"learning_rate": 2.2767798151380597e-05,
|
1758 |
+
"loss": 0.6908,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.3347894227883557,
|
1763 |
+
"grad_norm": 2.4867165525033,
|
1764 |
+
"learning_rate": 2.27134131111782e-05,
|
1765 |
+
"loss": 0.6838,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.33612324518990294,
|
1770 |
+
"grad_norm": 14.755496795057269,
|
1771 |
+
"learning_rate": 2.2658889872329628e-05,
|
1772 |
+
"loss": 0.7072,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.3374570675914502,
|
1777 |
+
"grad_norm": 11.498768616138861,
|
1778 |
+
"learning_rate": 2.2604229411709518e-05,
|
1779 |
+
"loss": 0.6837,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.33879088999299745,
|
1784 |
+
"grad_norm": 1.6627733851927542,
|
1785 |
+
"learning_rate": 2.25494327086511e-05,
|
1786 |
+
"loss": 0.6948,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.34012471239454467,
|
1791 |
+
"grad_norm": 4.465322393758394,
|
1792 |
+
"learning_rate": 2.2494500744928583e-05,
|
1793 |
+
"loss": 0.706,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.3414585347960919,
|
1798 |
+
"grad_norm": 2.5329140738676714,
|
1799 |
+
"learning_rate": 2.243943450473963e-05,
|
1800 |
+
"loss": 0.6652,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.3427923571976391,
|
1805 |
+
"grad_norm": 2.6213955428320963,
|
1806 |
+
"learning_rate": 2.2384234974687658e-05,
|
1807 |
+
"loss": 0.7123,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.34412617959918634,
|
1812 |
+
"grad_norm": 2.8450668136715827,
|
1813 |
+
"learning_rate": 2.2328903143764216e-05,
|
1814 |
+
"loss": 0.6748,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.3454600020007336,
|
1819 |
+
"grad_norm": 9.246863580911334,
|
1820 |
+
"learning_rate": 2.2273440003331237e-05,
|
1821 |
+
"loss": 0.6774,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.34679382440228085,
|
1826 |
+
"grad_norm": 2.610989556515575,
|
1827 |
+
"learning_rate": 2.2217846547103275e-05,
|
1828 |
+
"loss": 0.7042,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.3481276468038281,
|
1833 |
+
"grad_norm": 7.325969061692186,
|
1834 |
+
"learning_rate": 2.216212377112972e-05,
|
1835 |
+
"loss": 0.6834,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.3494614692053753,
|
1840 |
+
"grad_norm": 3.001379331751721,
|
1841 |
+
"learning_rate": 2.2106272673776934e-05,
|
1842 |
+
"loss": 0.7033,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.3507952916069225,
|
1847 |
+
"grad_norm": 3.463073346975308,
|
1848 |
+
"learning_rate": 2.2050294255710375e-05,
|
1849 |
+
"loss": 0.6839,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.35212911400846975,
|
1854 |
+
"grad_norm": 3.524564101951424,
|
1855 |
+
"learning_rate": 2.1994189519876663e-05,
|
1856 |
+
"loss": 0.6948,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.353462936410017,
|
1861 |
+
"grad_norm": 3.152341329769827,
|
1862 |
+
"learning_rate": 2.19379594714856e-05,
|
1863 |
+
"loss": 0.6767,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.35479675881156425,
|
1868 |
+
"grad_norm": 4.2343916663936305,
|
1869 |
+
"learning_rate": 2.188160511799219e-05,
|
1870 |
+
"loss": 0.6755,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.3561305812131115,
|
1875 |
+
"grad_norm": 2.7909676165285813,
|
1876 |
+
"learning_rate": 2.1825127469078555e-05,
|
1877 |
+
"loss": 0.6694,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.3574644036146587,
|
1882 |
+
"grad_norm": 1.8765416483232782,
|
1883 |
+
"learning_rate": 2.1768527536635868e-05,
|
1884 |
+
"loss": 0.7031,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.3587982260162059,
|
1889 |
+
"grad_norm": 13.262978009985517,
|
1890 |
+
"learning_rate": 2.171180633474621e-05,
|
1891 |
+
"loss": 0.7371,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.3601320484177532,
|
1896 |
+
"grad_norm": 3.886717400478723,
|
1897 |
+
"learning_rate": 2.1654964879664407e-05,
|
1898 |
+
"loss": 0.7109,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.3614658708193004,
|
1903 |
+
"grad_norm": 2.040560351248799,
|
1904 |
+
"learning_rate": 2.1598004189799826e-05,
|
1905 |
+
"loss": 0.7274,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.36279969322084765,
|
1910 |
+
"grad_norm": 24.610089275348535,
|
1911 |
+
"learning_rate": 2.1540925285698122e-05,
|
1912 |
+
"loss": 0.6886,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.3641335156223949,
|
1917 |
+
"grad_norm": 3.6439264742220216,
|
1918 |
+
"learning_rate": 2.148372919002295e-05,
|
1919 |
+
"loss": 0.681,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.3654673380239421,
|
1924 |
+
"grad_norm": 5.83580774778366,
|
1925 |
+
"learning_rate": 2.142641692753765e-05,
|
1926 |
+
"loss": 0.6502,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.3668011604254893,
|
1931 |
+
"grad_norm": 1.8530940550203352,
|
1932 |
+
"learning_rate": 2.1368989525086893e-05,
|
1933 |
+
"loss": 0.6854,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.3681349828270366,
|
1938 |
+
"grad_norm": 5.003536499561226,
|
1939 |
+
"learning_rate": 2.1311448011578255e-05,
|
1940 |
+
"loss": 0.6699,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.36946880522858383,
|
1945 |
+
"grad_norm": 2.6889933495770912,
|
1946 |
+
"learning_rate": 2.125379341796382e-05,
|
1947 |
+
"loss": 0.741,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.37080262763013105,
|
1952 |
+
"grad_norm": 2.0672372686575575,
|
1953 |
+
"learning_rate": 2.1196026777221684e-05,
|
1954 |
+
"loss": 0.693,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.3721364500316783,
|
1959 |
+
"grad_norm": 3.023122371840424,
|
1960 |
+
"learning_rate": 2.1138149124337448e-05,
|
1961 |
+
"loss": 0.7227,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.3734702724332255,
|
1966 |
+
"grad_norm": 5.98908480573641,
|
1967 |
+
"learning_rate": 2.108016149628569e-05,
|
1968 |
+
"loss": 0.6875,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.3748040948347727,
|
1973 |
+
"grad_norm": 13.324804502845906,
|
1974 |
+
"learning_rate": 2.102206493201137e-05,
|
1975 |
+
"loss": 0.6693,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.37613791723632,
|
1980 |
+
"grad_norm": 2.877158805709884,
|
1981 |
+
"learning_rate": 2.096386047241123e-05,
|
1982 |
+
"loss": 0.6752,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.37747173963786723,
|
1987 |
+
"grad_norm": 3.417018003930411,
|
1988 |
+
"learning_rate": 2.0905549160315116e-05,
|
1989 |
+
"loss": 0.6874,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.37880556203941446,
|
1994 |
+
"grad_norm": 6.197947611584602,
|
1995 |
+
"learning_rate": 2.084713204046734e-05,
|
1996 |
+
"loss": 0.6995,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.3801393844409617,
|
2001 |
+
"grad_norm": 2.4400537269180327,
|
2002 |
+
"learning_rate": 2.078861015950793e-05,
|
2003 |
+
"loss": 0.718,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.3814732068425089,
|
2008 |
+
"grad_norm": 3.4313321352162878,
|
2009 |
+
"learning_rate": 2.072998456595387e-05,
|
2010 |
+
"loss": 0.6928,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.38280702924405613,
|
2015 |
+
"grad_norm": 3.323108743280233,
|
2016 |
+
"learning_rate": 2.0671256310180334e-05,
|
2017 |
+
"loss": 0.7141,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.3841408516456034,
|
2022 |
+
"grad_norm": 2.270407423855968,
|
2023 |
+
"learning_rate": 2.0612426444401874e-05,
|
2024 |
+
"loss": 0.6677,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.38547467404715063,
|
2029 |
+
"grad_norm": 4.473087793045971,
|
2030 |
+
"learning_rate": 2.0553496022653535e-05,
|
2031 |
+
"loss": 0.706,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.38680849644869786,
|
2036 |
+
"grad_norm": 4.498504602131192,
|
2037 |
+
"learning_rate": 2.0494466100772006e-05,
|
2038 |
+
"loss": 0.6783,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.3881423188502451,
|
2043 |
+
"grad_norm": 1.8721168603816298,
|
2044 |
+
"learning_rate": 2.0435337736376677e-05,
|
2045 |
+
"loss": 0.7327,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.3894761412517923,
|
2050 |
+
"grad_norm": 2.1819398242824093,
|
2051 |
+
"learning_rate": 2.03761119888507e-05,
|
2052 |
+
"loss": 0.6798,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.39080996365333953,
|
2057 |
+
"grad_norm": 29.747303047069977,
|
2058 |
+
"learning_rate": 2.031678991932201e-05,
|
2059 |
+
"loss": 0.7045,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.3921437860548868,
|
2064 |
+
"grad_norm": 4.708328967247123,
|
2065 |
+
"learning_rate": 2.0257372590644314e-05,
|
2066 |
+
"loss": 0.6896,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.39347760845643404,
|
2071 |
+
"grad_norm": 2.873510721340991,
|
2072 |
+
"learning_rate": 2.0197861067378044e-05,
|
2073 |
+
"loss": 0.6802,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.39481143085798126,
|
2078 |
+
"grad_norm": 4.540574995423212,
|
2079 |
+
"learning_rate": 2.0138256415771275e-05,
|
2080 |
+
"loss": 0.6219,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3961452532595285,
|
2085 |
+
"grad_norm": 11.817372765224325,
|
2086 |
+
"learning_rate": 2.0078559703740654e-05,
|
2087 |
+
"loss": 0.65,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3974790756610757,
|
2092 |
+
"grad_norm": 11.004144754692504,
|
2093 |
+
"learning_rate": 2.0018772000852216e-05,
|
2094 |
+
"loss": 0.7056,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.398812898062623,
|
2099 |
+
"grad_norm": 1.7365475356133573,
|
2100 |
+
"learning_rate": 1.9958894378302265e-05,
|
2101 |
+
"loss": 0.6827,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.4001467204641702,
|
2106 |
+
"grad_norm": 4.31426545646336,
|
2107 |
+
"learning_rate": 1.989892790889817e-05,
|
2108 |
+
"loss": 0.6796,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.40148054286571744,
|
2113 |
+
"grad_norm": 2.534413468413497,
|
2114 |
+
"learning_rate": 1.9838873667039134e-05,
|
2115 |
+
"loss": 0.6825,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.40281436526726466,
|
2120 |
+
"grad_norm": 2.5821079814088,
|
2121 |
+
"learning_rate": 1.9778732728696937e-05,
|
2122 |
+
"loss": 0.6522,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.4041481876688119,
|
2127 |
+
"grad_norm": 10.45675108188373,
|
2128 |
+
"learning_rate": 1.9718506171396694e-05,
|
2129 |
+
"loss": 0.6752,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.4054820100703591,
|
2134 |
+
"grad_norm": 10.969680268488736,
|
2135 |
+
"learning_rate": 1.965819507419751e-05,
|
2136 |
+
"loss": 0.7195,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.4068158324719064,
|
2141 |
+
"grad_norm": 9.540053007670354,
|
2142 |
+
"learning_rate": 1.9597800517673165e-05,
|
2143 |
+
"loss": 0.6762,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.4081496548734536,
|
2148 |
+
"grad_norm": 8.551702443669248,
|
2149 |
+
"learning_rate": 1.9537323583892753e-05,
|
2150 |
+
"loss": 0.7292,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.40948347727500084,
|
2155 |
+
"grad_norm": 3.0994689178852903,
|
2156 |
+
"learning_rate": 1.9476765356401304e-05,
|
2157 |
+
"loss": 0.6764,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.41081729967654806,
|
2162 |
+
"grad_norm": 3.1013298812228163,
|
2163 |
+
"learning_rate": 1.9416126920200344e-05,
|
2164 |
+
"loss": 0.6484,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.4121511220780953,
|
2169 |
+
"grad_norm": 2.00628497131861,
|
2170 |
+
"learning_rate": 1.9355409361728482e-05,
|
2171 |
+
"loss": 0.7094,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.4134849444796425,
|
2176 |
+
"grad_norm": 5.224082004633703,
|
2177 |
+
"learning_rate": 1.9294613768841932e-05,
|
2178 |
+
"loss": 0.7279,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.4148187668811898,
|
2183 |
+
"grad_norm": 18.62631978728915,
|
2184 |
+
"learning_rate": 1.9233741230795022e-05,
|
2185 |
+
"loss": 0.662,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.416152589282737,
|
2190 |
+
"grad_norm": 3.6495526914982968,
|
2191 |
+
"learning_rate": 1.9172792838220686e-05,
|
2192 |
+
"loss": 0.6836,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.41748641168428424,
|
2197 |
+
"grad_norm": 2.304337917905853,
|
2198 |
+
"learning_rate": 1.9111769683110914e-05,
|
2199 |
+
"loss": 0.6901,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.41882023408583147,
|
2204 |
+
"grad_norm": 8.427846401703292,
|
2205 |
+
"learning_rate": 1.905067285879719e-05,
|
2206 |
+
"loss": 0.6606,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.4201540564873787,
|
2211 |
+
"grad_norm": 2.2306668115119104,
|
2212 |
+
"learning_rate": 1.8989503459930908e-05,
|
2213 |
+
"loss": 0.7434,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.4214878788889259,
|
2218 |
+
"grad_norm": 2.231586663842237,
|
2219 |
+
"learning_rate": 1.892826258246376e-05,
|
2220 |
+
"loss": 0.7184,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.4228217012904732,
|
2225 |
+
"grad_norm": 5.804571835994344,
|
2226 |
+
"learning_rate": 1.886695132362808e-05,
|
2227 |
+
"loss": 0.7073,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.4241555236920204,
|
2232 |
+
"grad_norm": 4.7472512172058785,
|
2233 |
+
"learning_rate": 1.8805570781917228e-05,
|
2234 |
+
"loss": 0.7102,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.42548934609356764,
|
2239 |
+
"grad_norm": 1.723627694530291,
|
2240 |
+
"learning_rate": 1.8744122057065856e-05,
|
2241 |
+
"loss": 0.6828,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.42682316849511487,
|
2246 |
+
"grad_norm": 1.9952068710149184,
|
2247 |
+
"learning_rate": 1.868260625003024e-05,
|
2248 |
+
"loss": 0.6545,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.4281569908966621,
|
2253 |
+
"grad_norm": 4.588444559005735,
|
2254 |
+
"learning_rate": 1.8621024462968553e-05,
|
2255 |
+
"loss": 0.67,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.4294908132982093,
|
2260 |
+
"grad_norm": 2.155634253115107,
|
2261 |
+
"learning_rate": 1.85593777992211e-05,
|
2262 |
+
"loss": 0.7173,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.4308246356997566,
|
2267 |
+
"grad_norm": 3.3412948579128194,
|
2268 |
+
"learning_rate": 1.849766736329056e-05,
|
2269 |
+
"loss": 0.6364,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.4321584581013038,
|
2274 |
+
"grad_norm": 2.1344417176214607,
|
2275 |
+
"learning_rate": 1.8435894260822208e-05,
|
2276 |
+
"loss": 0.6919,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.43349228050285105,
|
2281 |
+
"grad_norm": 3.8410669902748764,
|
2282 |
+
"learning_rate": 1.8374059598584084e-05,
|
2283 |
+
"loss": 0.6524,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.43482610290439827,
|
2288 |
+
"grad_norm": 2.609728029777106,
|
2289 |
+
"learning_rate": 1.831216448444717e-05,
|
2290 |
+
"loss": 0.688,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.4361599253059455,
|
2295 |
+
"grad_norm": 2.182084710285402,
|
2296 |
+
"learning_rate": 1.8250210027365562e-05,
|
2297 |
+
"loss": 0.7327,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.4374937477074928,
|
2302 |
+
"grad_norm": 1.0672619638672702,
|
2303 |
+
"learning_rate": 1.818819733735657e-05,
|
2304 |
+
"loss": 0.7137,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.43882757010904,
|
2309 |
+
"grad_norm": 1.7248236414002174,
|
2310 |
+
"learning_rate": 1.812612752548084e-05,
|
2311 |
+
"loss": 0.6848,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.4401613925105872,
|
2316 |
+
"grad_norm": 2.717100059326369,
|
2317 |
+
"learning_rate": 1.806400170382246e-05,
|
2318 |
+
"loss": 0.6582,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.44149521491213445,
|
2323 |
+
"grad_norm": 2.7420980324781348,
|
2324 |
+
"learning_rate": 1.8001820985469026e-05,
|
2325 |
+
"loss": 0.6976,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.4428290373136817,
|
2330 |
+
"grad_norm": 3.9917362204420357,
|
2331 |
+
"learning_rate": 1.7939586484491704e-05,
|
2332 |
+
"loss": 0.7259,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.4441628597152289,
|
2337 |
+
"grad_norm": 3.2371945093430514,
|
2338 |
+
"learning_rate": 1.787729931592525e-05,
|
2339 |
+
"loss": 0.6883,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.4454966821167762,
|
2344 |
+
"grad_norm": 2.439245137250377,
|
2345 |
+
"learning_rate": 1.781496059574807e-05,
|
2346 |
+
"loss": 0.6876,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.4468305045183234,
|
2351 |
+
"grad_norm": 4.525984025887397,
|
2352 |
+
"learning_rate": 1.7752571440862178e-05,
|
2353 |
+
"loss": 0.6724,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.4481643269198706,
|
2358 |
+
"grad_norm": 2.3388903272276518,
|
2359 |
+
"learning_rate": 1.7690132969073223e-05,
|
2360 |
+
"loss": 0.7065,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.44949814932141785,
|
2365 |
+
"grad_norm": 6.946538587379132,
|
2366 |
+
"learning_rate": 1.7627646299070457e-05,
|
2367 |
+
"loss": 0.6444,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.4508319717229651,
|
2372 |
+
"grad_norm": 1.5334789635428385,
|
2373 |
+
"learning_rate": 1.7565112550406663e-05,
|
2374 |
+
"loss": 0.6597,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.4521657941245123,
|
2379 |
+
"grad_norm": 1.7438745925855814,
|
2380 |
+
"learning_rate": 1.7502532843478134e-05,
|
2381 |
+
"loss": 0.736,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.4534996165260596,
|
2386 |
+
"grad_norm": 2.352884928297456,
|
2387 |
+
"learning_rate": 1.743990829950458e-05,
|
2388 |
+
"loss": 0.7209,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.4548334389276068,
|
2393 |
+
"grad_norm": 2.589791551987411,
|
2394 |
+
"learning_rate": 1.737724004050903e-05,
|
2395 |
+
"loss": 0.6873,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.45616726132915403,
|
2400 |
+
"grad_norm": 1.5018800238986845,
|
2401 |
+
"learning_rate": 1.731452918929774e-05,
|
2402 |
+
"loss": 0.6993,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.45750108373070125,
|
2407 |
+
"grad_norm": 1.618737845945941,
|
2408 |
+
"learning_rate": 1.7251776869440097e-05,
|
2409 |
+
"loss": 0.719,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.4588349061322485,
|
2414 |
+
"grad_norm": 4.764891120811521,
|
2415 |
+
"learning_rate": 1.718898420524845e-05,
|
2416 |
+
"loss": 0.7066,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.4601687285337957,
|
2421 |
+
"grad_norm": 30.008073864717016,
|
2422 |
+
"learning_rate": 1.7126152321757985e-05,
|
2423 |
+
"loss": 0.7234,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.461502550935343,
|
2428 |
+
"grad_norm": 4.718402571866902,
|
2429 |
+
"learning_rate": 1.7063282344706577e-05,
|
2430 |
+
"loss": 0.671,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.4628363733368902,
|
2435 |
+
"grad_norm": 3.279168331496427,
|
2436 |
+
"learning_rate": 1.7000375400514602e-05,
|
2437 |
+
"loss": 0.6748,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.46417019573843743,
|
2442 |
+
"grad_norm": 4.202866783860852,
|
2443 |
+
"learning_rate": 1.693743261626476e-05,
|
2444 |
+
"loss": 0.7135,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.46550401813998465,
|
2449 |
+
"grad_norm": 2.959211747400748,
|
2450 |
+
"learning_rate": 1.68744551196819e-05,
|
2451 |
+
"loss": 0.6684,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.4668378405415319,
|
2456 |
+
"grad_norm": 3.7208053935256085,
|
2457 |
+
"learning_rate": 1.6811444039112787e-05,
|
2458 |
+
"loss": 0.6842,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.4681716629430791,
|
2463 |
+
"grad_norm": 1.8411337183473255,
|
2464 |
+
"learning_rate": 1.6748400503505905e-05,
|
2465 |
+
"loss": 0.6796,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.4695054853446264,
|
2470 |
+
"grad_norm": 1.5569024338481647,
|
2471 |
+
"learning_rate": 1.6685325642391223e-05,
|
2472 |
+
"loss": 0.7357,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.4708393077461736,
|
2477 |
+
"grad_norm": 2.30459532472586,
|
2478 |
+
"learning_rate": 1.662222058585996e-05,
|
2479 |
+
"loss": 0.6825,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.47217313014772083,
|
2484 |
+
"grad_norm": 1.6593076444414934,
|
2485 |
+
"learning_rate": 1.6559086464544334e-05,
|
2486 |
+
"loss": 0.7067,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.47350695254926806,
|
2491 |
+
"grad_norm": 2.6738168898709356,
|
2492 |
+
"learning_rate": 1.6495924409597305e-05,
|
2493 |
+
"loss": 0.665,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.4748407749508153,
|
2498 |
+
"grad_norm": 10.974918207024547,
|
2499 |
+
"learning_rate": 1.6432735552672317e-05,
|
2500 |
+
"loss": 0.705,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.4761745973523625,
|
2505 |
+
"grad_norm": 4.279092732465272,
|
2506 |
+
"learning_rate": 1.636952102590301e-05,
|
2507 |
+
"loss": 0.6858,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.4775084197539098,
|
2512 |
+
"grad_norm": 8.958608602390235,
|
2513 |
+
"learning_rate": 1.630628196188295e-05,
|
2514 |
+
"loss": 0.7022,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.478842242155457,
|
2519 |
+
"grad_norm": 1.2316277268276075,
|
2520 |
+
"learning_rate": 1.6243019493645315e-05,
|
2521 |
+
"loss": 0.7091,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.48017606455700423,
|
2526 |
+
"grad_norm": 1.6977852924595596,
|
2527 |
+
"learning_rate": 1.617973475464262e-05,
|
2528 |
+
"loss": 0.6725,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.48150988695855146,
|
2533 |
+
"grad_norm": 9.102696583046576,
|
2534 |
+
"learning_rate": 1.6116428878726396e-05,
|
2535 |
+
"loss": 0.706,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.4828437093600987,
|
2540 |
+
"grad_norm": 2.983654314671525,
|
2541 |
+
"learning_rate": 1.6053103000126874e-05,
|
2542 |
+
"loss": 0.6663,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.48417753176164596,
|
2547 |
+
"grad_norm": 2.9273555172026304,
|
2548 |
+
"learning_rate": 1.598975825343267e-05,
|
2549 |
+
"loss": 0.6986,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.4855113541631932,
|
2554 |
+
"grad_norm": 2.4687475856334613,
|
2555 |
+
"learning_rate": 1.5926395773570447e-05,
|
2556 |
+
"loss": 0.7192,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.4868451765647404,
|
2561 |
+
"grad_norm": 4.171039626246759,
|
2562 |
+
"learning_rate": 1.5863016695784604e-05,
|
2563 |
+
"loss": 0.6702,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.48817899896628764,
|
2568 |
+
"grad_norm": 3.8655482044779337,
|
2569 |
+
"learning_rate": 1.5799622155616887e-05,
|
2570 |
+
"loss": 0.6568,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.48951282136783486,
|
2575 |
+
"grad_norm": 2.8245022157946362,
|
2576 |
+
"learning_rate": 1.5736213288886112e-05,
|
2577 |
+
"loss": 0.7075,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.4908466437693821,
|
2582 |
+
"grad_norm": 2.1969432272158556,
|
2583 |
+
"learning_rate": 1.567279123166776e-05,
|
2584 |
+
"loss": 0.7043,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.49218046617092936,
|
2589 |
+
"grad_norm": 3.7154807458182835,
|
2590 |
+
"learning_rate": 1.560935712027364e-05,
|
2591 |
+
"loss": 0.6467,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.4935142885724766,
|
2596 |
+
"grad_norm": 4.060155573527941,
|
2597 |
+
"learning_rate": 1.5545912091231543e-05,
|
2598 |
+
"loss": 0.6957,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.4948481109740238,
|
2603 |
+
"grad_norm": 2.057087008440973,
|
2604 |
+
"learning_rate": 1.548245728126486e-05,
|
2605 |
+
"loss": 0.6656,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.49618193337557104,
|
2610 |
+
"grad_norm": 1.975534767472513,
|
2611 |
+
"learning_rate": 1.5418993827272224e-05,
|
2612 |
+
"loss": 0.6867,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.49751575577711826,
|
2617 |
+
"grad_norm": 11.237169875747464,
|
2618 |
+
"learning_rate": 1.5355522866307144e-05,
|
2619 |
+
"loss": 0.693,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.4988495781786655,
|
2624 |
+
"grad_norm": 2.7505125088389066,
|
2625 |
+
"learning_rate": 1.529204553555762e-05,
|
2626 |
+
"loss": 0.6715,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.5001834005802127,
|
2631 |
+
"grad_norm": 14.47964311360144,
|
2632 |
+
"learning_rate": 1.522856297232579e-05,
|
2633 |
+
"loss": 0.6638,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.5015172229817599,
|
2638 |
+
"grad_norm": 1.4576903787797197,
|
2639 |
+
"learning_rate": 1.5165076314007529e-05,
|
2640 |
+
"loss": 0.6461,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.5028510453833072,
|
2645 |
+
"grad_norm": 4.190097060433623,
|
2646 |
+
"learning_rate": 1.5101586698072095e-05,
|
2647 |
+
"loss": 0.6997,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.5041848677848545,
|
2652 |
+
"grad_norm": 2.6358802196743887,
|
2653 |
+
"learning_rate": 1.5038095262041725e-05,
|
2654 |
+
"loss": 0.6805,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.5055186901864017,
|
2659 |
+
"grad_norm": 2.9885793100944484,
|
2660 |
+
"learning_rate": 1.4974603143471268e-05,
|
2661 |
+
"loss": 0.663,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.506852512587949,
|
2666 |
+
"grad_norm": 3.364287860442736,
|
2667 |
+
"learning_rate": 1.4911111479927804e-05,
|
2668 |
+
"loss": 0.6851,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.5081863349894962,
|
2673 |
+
"grad_norm": 6.415730527817265,
|
2674 |
+
"learning_rate": 1.4847621408970266e-05,
|
2675 |
+
"loss": 0.6544,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.5095201573910434,
|
2680 |
+
"grad_norm": 1.6327349630681778,
|
2681 |
+
"learning_rate": 1.4784134068129043e-05,
|
2682 |
+
"loss": 0.6629,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.5108539797925906,
|
2687 |
+
"grad_norm": 3.0622996050606783,
|
2688 |
+
"learning_rate": 1.4720650594885614e-05,
|
2689 |
+
"loss": 0.6651,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.5121878021941378,
|
2694 |
+
"grad_norm": 5.445942430441996,
|
2695 |
+
"learning_rate": 1.4657172126652167e-05,
|
2696 |
+
"loss": 0.664,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.5135216245956851,
|
2701 |
+
"grad_norm": 4.518334654823446,
|
2702 |
+
"learning_rate": 1.459369980075121e-05,
|
2703 |
+
"loss": 0.6959,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.5148554469972323,
|
2708 |
+
"grad_norm": 1.8471627413065406,
|
2709 |
+
"learning_rate": 1.4530234754395207e-05,
|
2710 |
+
"loss": 0.6774,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.5161892693987795,
|
2715 |
+
"grad_norm": 3.6484122755334525,
|
2716 |
+
"learning_rate": 1.4466778124666192e-05,
|
2717 |
+
"loss": 0.6825,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.5175230918003267,
|
2722 |
+
"grad_norm": 2.087118207544068,
|
2723 |
+
"learning_rate": 1.4403331048495404e-05,
|
2724 |
+
"loss": 0.6985,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.5188569142018741,
|
2729 |
+
"grad_norm": 11.878313425481934,
|
2730 |
+
"learning_rate": 1.4339894662642914e-05,
|
2731 |
+
"loss": 0.6764,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.5201907366034213,
|
2736 |
+
"grad_norm": 2.5453717997032115,
|
2737 |
+
"learning_rate": 1.4276470103677257e-05,
|
2738 |
+
"loss": 0.7091,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.5215245590049685,
|
2743 |
+
"grad_norm": 4.791248513372535,
|
2744 |
+
"learning_rate": 1.4213058507955072e-05,
|
2745 |
+
"loss": 0.644,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.5228583814065157,
|
2750 |
+
"grad_norm": 2.1955258954683545,
|
2751 |
+
"learning_rate": 1.4149661011600734e-05,
|
2752 |
+
"loss": 0.6954,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.524192203808063,
|
2757 |
+
"grad_norm": 3.5143987933185676,
|
2758 |
+
"learning_rate": 1.4086278750486017e-05,
|
2759 |
+
"loss": 0.6848,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.5255260262096102,
|
2764 |
+
"grad_norm": 3.168504700204386,
|
2765 |
+
"learning_rate": 1.4022912860209709e-05,
|
2766 |
+
"loss": 0.6752,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.5268598486111574,
|
2771 |
+
"grad_norm": 1.9655682723891459,
|
2772 |
+
"learning_rate": 1.3959564476077308e-05,
|
2773 |
+
"loss": 0.6904,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.5281936710127046,
|
2778 |
+
"grad_norm": 1.6897897373972772,
|
2779 |
+
"learning_rate": 1.389623473308065e-05,
|
2780 |
+
"loss": 0.6929,
|
2781 |
+
"step": 3960
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.5295274934142519,
|
2785 |
+
"grad_norm": 4.400154605229998,
|
2786 |
+
"learning_rate": 1.3832924765877587e-05,
|
2787 |
+
"loss": 0.726,
|
2788 |
+
"step": 3970
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.5308613158157991,
|
2792 |
+
"grad_norm": 2.790842978581456,
|
2793 |
+
"learning_rate": 1.3769635708771654e-05,
|
2794 |
+
"loss": 0.6724,
|
2795 |
+
"step": 3980
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.5321951382173463,
|
2799 |
+
"grad_norm": 1.5712798066752716,
|
2800 |
+
"learning_rate": 1.3706368695691745e-05,
|
2801 |
+
"loss": 0.6703,
|
2802 |
+
"step": 3990
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.5335289606188935,
|
2806 |
+
"grad_norm": 5.340886291219129,
|
2807 |
+
"learning_rate": 1.3643124860171801e-05,
|
2808 |
+
"loss": 0.6595,
|
2809 |
+
"step": 4000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.5348627830204409,
|
2813 |
+
"grad_norm": 1.985940330857511,
|
2814 |
+
"learning_rate": 1.35799053353305e-05,
|
2815 |
+
"loss": 0.6892,
|
2816 |
+
"step": 4010
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.5361966054219881,
|
2820 |
+
"grad_norm": 3.917331449757074,
|
2821 |
+
"learning_rate": 1.3516711253850949e-05,
|
2822 |
+
"loss": 0.6417,
|
2823 |
+
"step": 4020
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.5375304278235353,
|
2827 |
+
"grad_norm": 1.66962823795828,
|
2828 |
+
"learning_rate": 1.3453543747960393e-05,
|
2829 |
+
"loss": 0.6784,
|
2830 |
+
"step": 4030
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.5388642502250826,
|
2834 |
+
"grad_norm": 4.181035760200595,
|
2835 |
+
"learning_rate": 1.3390403949409943e-05,
|
2836 |
+
"loss": 0.7115,
|
2837 |
+
"step": 4040
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.5401980726266298,
|
2841 |
+
"grad_norm": 2.4193575665243214,
|
2842 |
+
"learning_rate": 1.3327292989454273e-05,
|
2843 |
+
"loss": 0.7104,
|
2844 |
+
"step": 4050
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.541531895028177,
|
2848 |
+
"grad_norm": 2.0442192962046275,
|
2849 |
+
"learning_rate": 1.3264211998831374e-05,
|
2850 |
+
"loss": 0.7008,
|
2851 |
+
"step": 4060
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.5428657174297242,
|
2855 |
+
"grad_norm": 3.0689852808863183,
|
2856 |
+
"learning_rate": 1.3201162107742285e-05,
|
2857 |
+
"loss": 0.677,
|
2858 |
+
"step": 4070
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.5441995398312715,
|
2862 |
+
"grad_norm": 2.22632841251654,
|
2863 |
+
"learning_rate": 1.3138144445830841e-05,
|
2864 |
+
"loss": 0.6223,
|
2865 |
+
"step": 4080
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.5455333622328187,
|
2869 |
+
"grad_norm": 8.813265719863766,
|
2870 |
+
"learning_rate": 1.3075160142163442e-05,
|
2871 |
+
"loss": 0.6791,
|
2872 |
+
"step": 4090
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.5468671846343659,
|
2876 |
+
"grad_norm": 2.461550778463616,
|
2877 |
+
"learning_rate": 1.3012210325208818e-05,
|
2878 |
+
"loss": 0.7165,
|
2879 |
+
"step": 4100
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.5482010070359131,
|
2883 |
+
"grad_norm": 2.1304508310591896,
|
2884 |
+
"learning_rate": 1.2949296122817813e-05,
|
2885 |
+
"loss": 0.6905,
|
2886 |
+
"step": 4110
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.5495348294374603,
|
2890 |
+
"grad_norm": 2.1733622775851535,
|
2891 |
+
"learning_rate": 1.2886418662203174e-05,
|
2892 |
+
"loss": 0.6963,
|
2893 |
+
"step": 4120
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.5508686518390077,
|
2897 |
+
"grad_norm": 2.654530675610581,
|
2898 |
+
"learning_rate": 1.282357906991936e-05,
|
2899 |
+
"loss": 0.6796,
|
2900 |
+
"step": 4130
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.5522024742405549,
|
2904 |
+
"grad_norm": 2.6976858995246085,
|
2905 |
+
"learning_rate": 1.276077847184236e-05,
|
2906 |
+
"loss": 0.6922,
|
2907 |
+
"step": 4140
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.5535362966421021,
|
2911 |
+
"grad_norm": 2.5591371381474857,
|
2912 |
+
"learning_rate": 1.2698017993149504e-05,
|
2913 |
+
"loss": 0.7047,
|
2914 |
+
"step": 4150
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.5548701190436494,
|
2918 |
+
"grad_norm": 6.439964637422321,
|
2919 |
+
"learning_rate": 1.2635298758299336e-05,
|
2920 |
+
"loss": 0.6722,
|
2921 |
+
"step": 4160
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.5562039414451966,
|
2925 |
+
"grad_norm": 1.6222259612163727,
|
2926 |
+
"learning_rate": 1.2572621891011426e-05,
|
2927 |
+
"loss": 0.6646,
|
2928 |
+
"step": 4170
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.5575377638467438,
|
2932 |
+
"grad_norm": 3.410425968580818,
|
2933 |
+
"learning_rate": 1.2509988514246272e-05,
|
2934 |
+
"loss": 0.6894,
|
2935 |
+
"step": 4180
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.558871586248291,
|
2939 |
+
"grad_norm": 2.7111542804682327,
|
2940 |
+
"learning_rate": 1.2447399750185166e-05,
|
2941 |
+
"loss": 0.7196,
|
2942 |
+
"step": 4190
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.5602054086498383,
|
2946 |
+
"grad_norm": 3.3657872237953868,
|
2947 |
+
"learning_rate": 1.2384856720210086e-05,
|
2948 |
+
"loss": 0.7052,
|
2949 |
+
"step": 4200
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.5615392310513855,
|
2953 |
+
"grad_norm": 3.4383001609998143,
|
2954 |
+
"learning_rate": 1.2322360544883608e-05,
|
2955 |
+
"loss": 0.664,
|
2956 |
+
"step": 4210
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.5628730534529327,
|
2960 |
+
"grad_norm": 4.31412552867304,
|
2961 |
+
"learning_rate": 1.2259912343928831e-05,
|
2962 |
+
"loss": 0.6923,
|
2963 |
+
"step": 4220
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.5642068758544799,
|
2967 |
+
"grad_norm": 2.9738159323747655,
|
2968 |
+
"learning_rate": 1.2197513236209312e-05,
|
2969 |
+
"loss": 0.6787,
|
2970 |
+
"step": 4230
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.5655406982560273,
|
2974 |
+
"grad_norm": 14.42279175461777,
|
2975 |
+
"learning_rate": 1.213516433970902e-05,
|
2976 |
+
"loss": 0.7313,
|
2977 |
+
"step": 4240
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.5668745206575745,
|
2981 |
+
"grad_norm": 2.6156276324588195,
|
2982 |
+
"learning_rate": 1.2072866771512306e-05,
|
2983 |
+
"loss": 0.6856,
|
2984 |
+
"step": 4250
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.5682083430591217,
|
2988 |
+
"grad_norm": 2.692794641012978,
|
2989 |
+
"learning_rate": 1.201062164778389e-05,
|
2990 |
+
"loss": 0.6587,
|
2991 |
+
"step": 4260
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.5695421654606689,
|
2995 |
+
"grad_norm": 3.01896569407463,
|
2996 |
+
"learning_rate": 1.1948430083748864e-05,
|
2997 |
+
"loss": 0.7225,
|
2998 |
+
"step": 4270
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.5708759878622162,
|
3002 |
+
"grad_norm": 2.266424840293995,
|
3003 |
+
"learning_rate": 1.1886293193672707e-05,
|
3004 |
+
"loss": 0.6847,
|
3005 |
+
"step": 4280
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.5722098102637634,
|
3009 |
+
"grad_norm": 2.2789387948762987,
|
3010 |
+
"learning_rate": 1.1824212090841321e-05,
|
3011 |
+
"loss": 0.7011,
|
3012 |
+
"step": 4290
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.5735436326653106,
|
3016 |
+
"grad_norm": 2.826447974943076,
|
3017 |
+
"learning_rate": 1.1762187887541088e-05,
|
3018 |
+
"loss": 0.689,
|
3019 |
+
"step": 4300
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.5748774550668578,
|
3023 |
+
"grad_norm": 2.565293440960005,
|
3024 |
+
"learning_rate": 1.1700221695038944e-05,
|
3025 |
+
"loss": 0.7077,
|
3026 |
+
"step": 4310
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.5762112774684051,
|
3030 |
+
"grad_norm": 4.459154190124916,
|
3031 |
+
"learning_rate": 1.1638314623562459e-05,
|
3032 |
+
"loss": 0.6885,
|
3033 |
+
"step": 4320
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.5775450998699523,
|
3037 |
+
"grad_norm": 1.8187338733285852,
|
3038 |
+
"learning_rate": 1.1576467782279953e-05,
|
3039 |
+
"loss": 0.7103,
|
3040 |
+
"step": 4330
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.5788789222714995,
|
3044 |
+
"grad_norm": 4.078050868504266,
|
3045 |
+
"learning_rate": 1.1514682279280621e-05,
|
3046 |
+
"loss": 0.6742,
|
3047 |
+
"step": 4340
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.5802127446730467,
|
3051 |
+
"grad_norm": 2.4612673583806233,
|
3052 |
+
"learning_rate": 1.1452959221554684e-05,
|
3053 |
+
"loss": 0.6941,
|
3054 |
+
"step": 4350
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.5815465670745941,
|
3058 |
+
"grad_norm": 8.05059787591381,
|
3059 |
+
"learning_rate": 1.1391299714973553e-05,
|
3060 |
+
"loss": 0.7072,
|
3061 |
+
"step": 4360
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.5828803894761413,
|
3065 |
+
"grad_norm": 5.041675641180621,
|
3066 |
+
"learning_rate": 1.1329704864270005e-05,
|
3067 |
+
"loss": 0.6914,
|
3068 |
+
"step": 4370
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.5842142118776885,
|
3072 |
+
"grad_norm": 3.8176735967050672,
|
3073 |
+
"learning_rate": 1.1268175773018409e-05,
|
3074 |
+
"loss": 0.6489,
|
3075 |
+
"step": 4380
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.5855480342792357,
|
3079 |
+
"grad_norm": 2.068471874891413,
|
3080 |
+
"learning_rate": 1.1206713543614942e-05,
|
3081 |
+
"loss": 0.7182,
|
3082 |
+
"step": 4390
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.586881856680783,
|
3086 |
+
"grad_norm": 4.7154770167485065,
|
3087 |
+
"learning_rate": 1.1145319277257834e-05,
|
3088 |
+
"loss": 0.6961,
|
3089 |
+
"step": 4400
|
3090 |
+
}
|
3091 |
+
],
|
3092 |
+
"logging_steps": 10,
|
3093 |
+
"max_steps": 7497,
|
3094 |
+
"num_input_tokens_seen": 0,
|
3095 |
+
"num_train_epochs": 1,
|
3096 |
+
"save_steps": 400,
|
3097 |
+
"stateful_callbacks": {
|
3098 |
+
"TrainerControl": {
|
3099 |
+
"args": {
|
3100 |
+
"should_epoch_stop": false,
|
3101 |
+
"should_evaluate": false,
|
3102 |
+
"should_log": false,
|
3103 |
+
"should_save": true,
|
3104 |
+
"should_training_stop": false
|
3105 |
+
},
|
3106 |
+
"attributes": {}
|
3107 |
+
}
|
3108 |
+
},
|
3109 |
+
"total_flos": 1.2027710597077402e+19,
|
3110 |
+
"train_batch_size": 4,
|
3111 |
+
"trial_name": null,
|
3112 |
+
"trial_params": null
|
3113 |
+
}
|
checkpoint-4400/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-4400/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-4800/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-4800/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-4800/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c05083f27fd26a33dc64dc995570f0d8ac7ce27fb7d8bd3b61d84bca79a3c67f
|
3 |
+
size 469105640
|
checkpoint-4800/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4800
|
checkpoint-4800/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-4800/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f49430bb7f3fc407165743dcb713a9162fadc53fe94ecae669ac0ed9451f1d1e
|
3 |
+
size 14960
|
checkpoint-4800/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e9c45f9e6bd4f11b72aa9dddde0270e00823fc90c88fd4edb125e1357d0fb7
|
3 |
+
size 14960
|
checkpoint-4800/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4720439d5378a1f85493188989a82f080aaed4b13064c31c2303b361d6ae051
|
3 |
+
size 14960
|
checkpoint-4800/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b662fb7f27f4ad0a51fedc292f436191d298938ae2e31a6769942de66cc735b2
|
3 |
+
size 14960
|
checkpoint-4800/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a664c5bf6eafd9d56904b210471088e839c3781b9ce1fe29f293f89479420e96
|
3 |
+
size 1064
|
checkpoint-4800/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-4800/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-4800/trainer_state.json
ADDED
@@ -0,0 +1,3393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6402347527426723,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.16139251058721532,
|
853 |
+
"grad_norm": 2.347985877636318,
|
854 |
+
"learning_rate": 2.8301985044857947e-05,
|
855 |
+
"loss": 0.7199,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.16272633298876255,
|
860 |
+
"grad_norm": 2.2534314586033113,
|
861 |
+
"learning_rate": 2.8272522724749743e-05,
|
862 |
+
"loss": 0.6835,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.16406015539030977,
|
867 |
+
"grad_norm": 3.159583116387406,
|
868 |
+
"learning_rate": 2.8242822605285323e-05,
|
869 |
+
"loss": 0.7122,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.16539397779185702,
|
874 |
+
"grad_norm": 2.086588782887239,
|
875 |
+
"learning_rate": 2.8212885218591812e-05,
|
876 |
+
"loss": 0.6949,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16672780019340425,
|
881 |
+
"grad_norm": 7.284236966547317,
|
882 |
+
"learning_rate": 2.8182711101047362e-05,
|
883 |
+
"loss": 0.6641,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16806162259495147,
|
888 |
+
"grad_norm": 3.0369619450249594,
|
889 |
+
"learning_rate": 2.815230079327156e-05,
|
890 |
+
"loss": 0.6731,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16939544499649872,
|
895 |
+
"grad_norm": 1.4144726574636068,
|
896 |
+
"learning_rate": 2.8121654840115734e-05,
|
897 |
+
"loss": 0.6898,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.17072926739804595,
|
902 |
+
"grad_norm": 3.66202356670303,
|
903 |
+
"learning_rate": 2.809077379065319e-05,
|
904 |
+
"loss": 0.7174,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.17206308979959317,
|
909 |
+
"grad_norm": 4.778073521019285,
|
910 |
+
"learning_rate": 2.805965819816937e-05,
|
911 |
+
"loss": 0.6186,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.17339691220114042,
|
916 |
+
"grad_norm": 3.9620427201734576,
|
917 |
+
"learning_rate": 2.802830862015196e-05,
|
918 |
+
"loss": 0.684,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.17473073460268765,
|
923 |
+
"grad_norm": 4.170199740083487,
|
924 |
+
"learning_rate": 2.799672561828087e-05,
|
925 |
+
"loss": 0.7102,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.17606455700423487,
|
930 |
+
"grad_norm": 2.2612205048804714,
|
931 |
+
"learning_rate": 2.79649097584182e-05,
|
932 |
+
"loss": 0.7451,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17739837940578213,
|
937 |
+
"grad_norm": 1.7156828128822517,
|
938 |
+
"learning_rate": 2.7932861610598077e-05,
|
939 |
+
"loss": 0.6641,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17873220180732935,
|
944 |
+
"grad_norm": 7.960733847217257,
|
945 |
+
"learning_rate": 2.7900581749016466e-05,
|
946 |
+
"loss": 0.7365,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1800660242088766,
|
951 |
+
"grad_norm": 2.5364939682563756,
|
952 |
+
"learning_rate": 2.7868070752020865e-05,
|
953 |
+
"loss": 0.7078,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.18139984661042383,
|
958 |
+
"grad_norm": 2.7446281678776137,
|
959 |
+
"learning_rate": 2.7835329202099944e-05,
|
960 |
+
"loss": 0.7214,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.18273366901197105,
|
965 |
+
"grad_norm": 3.2416602016145886,
|
966 |
+
"learning_rate": 2.7802357685873117e-05,
|
967 |
+
"loss": 0.6757,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1840674914135183,
|
972 |
+
"grad_norm": 5.225459736579946,
|
973 |
+
"learning_rate": 2.7769156794080033e-05,
|
974 |
+
"loss": 0.7381,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.18540131381506553,
|
979 |
+
"grad_norm": 5.176692689501482,
|
980 |
+
"learning_rate": 2.7735727121569967e-05,
|
981 |
+
"loss": 0.7354,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.18673513621661275,
|
986 |
+
"grad_norm": 2.7441883232342574,
|
987 |
+
"learning_rate": 2.770206926729121e-05,
|
988 |
+
"loss": 0.6937,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.18806895861816,
|
993 |
+
"grad_norm": 2.9792116246243525,
|
994 |
+
"learning_rate": 2.7668183834280284e-05,
|
995 |
+
"loss": 0.6641,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.18940278101970723,
|
1000 |
+
"grad_norm": 2.4645298487410723,
|
1001 |
+
"learning_rate": 2.763407142965117e-05,
|
1002 |
+
"loss": 0.6274,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.19073660342125445,
|
1007 |
+
"grad_norm": 7.245032878035033,
|
1008 |
+
"learning_rate": 2.759973266458444e-05,
|
1009 |
+
"loss": 0.6962,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1920704258228017,
|
1014 |
+
"grad_norm": 5.642209662597534,
|
1015 |
+
"learning_rate": 2.756516815431627e-05,
|
1016 |
+
"loss": 0.7016,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.19340424822434893,
|
1021 |
+
"grad_norm": 2.9804981875184526,
|
1022 |
+
"learning_rate": 2.7530378518127445e-05,
|
1023 |
+
"loss": 0.7331,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.19473807062589615,
|
1028 |
+
"grad_norm": 7.496561660992361,
|
1029 |
+
"learning_rate": 2.7495364379332256e-05,
|
1030 |
+
"loss": 0.7234,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.1960718930274434,
|
1035 |
+
"grad_norm": 1.6139389803246291,
|
1036 |
+
"learning_rate": 2.7460126365267335e-05,
|
1037 |
+
"loss": 0.7013,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.19740571542899063,
|
1042 |
+
"grad_norm": 4.618678334755141,
|
1043 |
+
"learning_rate": 2.7424665107280402e-05,
|
1044 |
+
"loss": 0.6892,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19873953783053785,
|
1049 |
+
"grad_norm": 15.494190234738744,
|
1050 |
+
"learning_rate": 2.738898124071898e-05,
|
1051 |
+
"loss": 0.6785,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2000733602320851,
|
1056 |
+
"grad_norm": 3.1680363319798954,
|
1057 |
+
"learning_rate": 2.735307540491898e-05,
|
1058 |
+
"loss": 0.669,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.20140718263363233,
|
1063 |
+
"grad_norm": 2.5397562341036224,
|
1064 |
+
"learning_rate": 2.7316948243193273e-05,
|
1065 |
+
"loss": 0.6726,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.20274100503517956,
|
1070 |
+
"grad_norm": 4.139021422606072,
|
1071 |
+
"learning_rate": 2.7280600402820146e-05,
|
1072 |
+
"loss": 0.6706,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2040748274367268,
|
1077 |
+
"grad_norm": 2.7422468825646065,
|
1078 |
+
"learning_rate": 2.724403253503171e-05,
|
1079 |
+
"loss": 0.7078,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.20540864983827403,
|
1084 |
+
"grad_norm": 2.744225768808104,
|
1085 |
+
"learning_rate": 2.7207245295002242e-05,
|
1086 |
+
"loss": 0.6821,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.20674247223982126,
|
1091 |
+
"grad_norm": 2.234040668790152,
|
1092 |
+
"learning_rate": 2.7170239341836436e-05,
|
1093 |
+
"loss": 0.7451,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.2080762946413685,
|
1098 |
+
"grad_norm": 2.531733996425376,
|
1099 |
+
"learning_rate": 2.7133015338557585e-05,
|
1100 |
+
"loss": 0.7205,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20941011704291573,
|
1105 |
+
"grad_norm": 2.9772483856455616,
|
1106 |
+
"learning_rate": 2.7095573952095727e-05,
|
1107 |
+
"loss": 0.7274,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.21074393944446296,
|
1112 |
+
"grad_norm": 3.317235333047955,
|
1113 |
+
"learning_rate": 2.705791585327568e-05,
|
1114 |
+
"loss": 0.7309,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2120777618460102,
|
1119 |
+
"grad_norm": 1.9652386793628944,
|
1120 |
+
"learning_rate": 2.7020041716805014e-05,
|
1121 |
+
"loss": 0.7157,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.21341158424755743,
|
1126 |
+
"grad_norm": 2.93724058913164,
|
1127 |
+
"learning_rate": 2.6981952221261986e-05,
|
1128 |
+
"loss": 0.7123,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.21474540664910466,
|
1133 |
+
"grad_norm": 6.395577225750395,
|
1134 |
+
"learning_rate": 2.6943648049083366e-05,
|
1135 |
+
"loss": 0.6991,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2160792290506519,
|
1140 |
+
"grad_norm": 2.4292347967714973,
|
1141 |
+
"learning_rate": 2.6905129886552208e-05,
|
1142 |
+
"loss": 0.7004,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.21741305145219914,
|
1147 |
+
"grad_norm": 1.8304810950546353,
|
1148 |
+
"learning_rate": 2.6866398423785568e-05,
|
1149 |
+
"loss": 0.6941,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.2187468738537464,
|
1154 |
+
"grad_norm": 2.762870839632077,
|
1155 |
+
"learning_rate": 2.682745435472212e-05,
|
1156 |
+
"loss": 0.6928,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.2200806962552936,
|
1161 |
+
"grad_norm": 3.4172019229090917,
|
1162 |
+
"learning_rate": 2.6788298377109748e-05,
|
1163 |
+
"loss": 0.7344,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.22141451865684084,
|
1168 |
+
"grad_norm": 2.7483538989548175,
|
1169 |
+
"learning_rate": 2.6748931192493017e-05,
|
1170 |
+
"loss": 0.7367,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.2227483410583881,
|
1175 |
+
"grad_norm": 7.314729269236597,
|
1176 |
+
"learning_rate": 2.670935350620063e-05,
|
1177 |
+
"loss": 0.6849,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.2240821634599353,
|
1182 |
+
"grad_norm": 3.8688065039432527,
|
1183 |
+
"learning_rate": 2.6669566027332767e-05,
|
1184 |
+
"loss": 0.6812,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.22541598586148254,
|
1189 |
+
"grad_norm": 7.10517346658295,
|
1190 |
+
"learning_rate": 2.6629569468748404e-05,
|
1191 |
+
"loss": 0.6089,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2267498082630298,
|
1196 |
+
"grad_norm": 2.4198822683275147,
|
1197 |
+
"learning_rate": 2.658936454705251e-05,
|
1198 |
+
"loss": 0.6666,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.22808363066457701,
|
1203 |
+
"grad_norm": 2.4915285584652054,
|
1204 |
+
"learning_rate": 2.6548951982583246e-05,
|
1205 |
+
"loss": 0.7088,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.22941745306612424,
|
1210 |
+
"grad_norm": 2.2849831540010537,
|
1211 |
+
"learning_rate": 2.650833249939903e-05,
|
1212 |
+
"loss": 0.7149,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.2307512754676715,
|
1217 |
+
"grad_norm": 1.5098088938051029,
|
1218 |
+
"learning_rate": 2.6467506825265573e-05,
|
1219 |
+
"loss": 0.7254,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.23208509786921871,
|
1224 |
+
"grad_norm": 3.4800248296443814,
|
1225 |
+
"learning_rate": 2.642647569164284e-05,
|
1226 |
+
"loss": 0.6916,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.23341892027076594,
|
1231 |
+
"grad_norm": 7.281500947090542,
|
1232 |
+
"learning_rate": 2.638523983367194e-05,
|
1233 |
+
"loss": 0.6831,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2347527426723132,
|
1238 |
+
"grad_norm": 3.0161864395495446,
|
1239 |
+
"learning_rate": 2.634379999016198e-05,
|
1240 |
+
"loss": 0.6999,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.23608656507386042,
|
1245 |
+
"grad_norm": 2.0917745352156762,
|
1246 |
+
"learning_rate": 2.6302156903576784e-05,
|
1247 |
+
"loss": 0.7112,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.23742038747540764,
|
1252 |
+
"grad_norm": 1.918811185774526,
|
1253 |
+
"learning_rate": 2.6260311320021628e-05,
|
1254 |
+
"loss": 0.6725,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.2387542098769549,
|
1259 |
+
"grad_norm": 3.0697413876733695,
|
1260 |
+
"learning_rate": 2.6218263989229855e-05,
|
1261 |
+
"loss": 0.7133,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.24008803227850212,
|
1266 |
+
"grad_norm": 6.14274393655379,
|
1267 |
+
"learning_rate": 2.617601566454944e-05,
|
1268 |
+
"loss": 0.6678,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.24142185468004934,
|
1273 |
+
"grad_norm": 4.259979200715344,
|
1274 |
+
"learning_rate": 2.613356710292951e-05,
|
1275 |
+
"loss": 0.7013,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.2427556770815966,
|
1280 |
+
"grad_norm": 3.1011058557692808,
|
1281 |
+
"learning_rate": 2.6090919064906766e-05,
|
1282 |
+
"loss": 0.7027,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.24408949948314382,
|
1287 |
+
"grad_norm": 3.677900978078831,
|
1288 |
+
"learning_rate": 2.6048072314591854e-05,
|
1289 |
+
"loss": 0.711,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.24542332188469104,
|
1294 |
+
"grad_norm": 2.368576699713982,
|
1295 |
+
"learning_rate": 2.600502761965569e-05,
|
1296 |
+
"loss": 0.6917,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.2467571442862383,
|
1301 |
+
"grad_norm": 3.0346306894457,
|
1302 |
+
"learning_rate": 2.59617857513157e-05,
|
1303 |
+
"loss": 0.69,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.24809096668778552,
|
1308 |
+
"grad_norm": 3.1228131080916204,
|
1309 |
+
"learning_rate": 2.591834748432198e-05,
|
1310 |
+
"loss": 0.695,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.24942478908933274,
|
1315 |
+
"grad_norm": 2.6886660685401034,
|
1316 |
+
"learning_rate": 2.5874713596943465e-05,
|
1317 |
+
"loss": 0.6681,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.25075861149087997,
|
1322 |
+
"grad_norm": 1.7244460999561722,
|
1323 |
+
"learning_rate": 2.5830884870953933e-05,
|
1324 |
+
"loss": 0.6737,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.25209243389242725,
|
1329 |
+
"grad_norm": 2.4283725332509842,
|
1330 |
+
"learning_rate": 2.578686209161803e-05,
|
1331 |
+
"loss": 0.6598,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.2534262562939745,
|
1336 |
+
"grad_norm": 5.496556851547161,
|
1337 |
+
"learning_rate": 2.5742646047677186e-05,
|
1338 |
+
"loss": 0.6931,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2547600786955217,
|
1343 |
+
"grad_norm": 1.2751270156124934,
|
1344 |
+
"learning_rate": 2.5698237531335493e-05,
|
1345 |
+
"loss": 0.7043,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.2560939010970689,
|
1350 |
+
"grad_norm": 8.807017683974516,
|
1351 |
+
"learning_rate": 2.56536373382455e-05,
|
1352 |
+
"loss": 0.6234,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.25742772349861615,
|
1357 |
+
"grad_norm": 3.6331868296726277,
|
1358 |
+
"learning_rate": 2.5608846267493974e-05,
|
1359 |
+
"loss": 0.6763,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.25876154590016337,
|
1364 |
+
"grad_norm": 5.094905230807839,
|
1365 |
+
"learning_rate": 2.5563865121587563e-05,
|
1366 |
+
"loss": 0.6692,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.26009536830171065,
|
1371 |
+
"grad_norm": 2.0520732769663237,
|
1372 |
+
"learning_rate": 2.5518694706438445e-05,
|
1373 |
+
"loss": 0.7008,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2614291907032579,
|
1378 |
+
"grad_norm": 2.1265138955486336,
|
1379 |
+
"learning_rate": 2.5473335831349842e-05,
|
1380 |
+
"loss": 0.6623,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2627630131048051,
|
1385 |
+
"grad_norm": 4.532469697105077,
|
1386 |
+
"learning_rate": 2.5427789309001577e-05,
|
1387 |
+
"loss": 0.7099,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2640968355063523,
|
1392 |
+
"grad_norm": 1.8912900905557881,
|
1393 |
+
"learning_rate": 2.538205595543548e-05,
|
1394 |
+
"loss": 0.712,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.26543065790789955,
|
1399 |
+
"grad_norm": 9.714825687307293,
|
1400 |
+
"learning_rate": 2.5336136590040767e-05,
|
1401 |
+
"loss": 0.6418,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.26676448030944677,
|
1406 |
+
"grad_norm": 4.375615975749738,
|
1407 |
+
"learning_rate": 2.529003203553937e-05,
|
1408 |
+
"loss": 0.6933,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.26809830271099405,
|
1413 |
+
"grad_norm": 5.945657366701919,
|
1414 |
+
"learning_rate": 2.5243743117971186e-05,
|
1415 |
+
"loss": 0.6748,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2694321251125413,
|
1420 |
+
"grad_norm": 7.453951551881255,
|
1421 |
+
"learning_rate": 2.5197270666679295e-05,
|
1422 |
+
"loss": 0.7004,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2707659475140885,
|
1427 |
+
"grad_norm": 2.3916662603858665,
|
1428 |
+
"learning_rate": 2.515061551429509e-05,
|
1429 |
+
"loss": 0.6961,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2720997699156357,
|
1434 |
+
"grad_norm": 3.5972047868369104,
|
1435 |
+
"learning_rate": 2.5103778496723334e-05,
|
1436 |
+
"loss": 0.7058,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.27343359231718295,
|
1441 |
+
"grad_norm": 4.525268184238612,
|
1442 |
+
"learning_rate": 2.5056760453127242e-05,
|
1443 |
+
"loss": 0.6704,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.2747674147187302,
|
1448 |
+
"grad_norm": 5.9581146555788465,
|
1449 |
+
"learning_rate": 2.5009562225913385e-05,
|
1450 |
+
"loss": 0.6722,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.27610123712027745,
|
1455 |
+
"grad_norm": 4.163590223716233,
|
1456 |
+
"learning_rate": 2.4962184660716645e-05,
|
1457 |
+
"loss": 0.6933,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.2774350595218247,
|
1462 |
+
"grad_norm": 2.0180801697563258,
|
1463 |
+
"learning_rate": 2.4914628606385022e-05,
|
1464 |
+
"loss": 0.6982,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.2787688819233719,
|
1469 |
+
"grad_norm": 2.3996169579330373,
|
1470 |
+
"learning_rate": 2.4866894914964462e-05,
|
1471 |
+
"loss": 0.6832,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.2801027043249191,
|
1476 |
+
"grad_norm": 20.07054133895426,
|
1477 |
+
"learning_rate": 2.481898444168357e-05,
|
1478 |
+
"loss": 0.6871,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.28143652672646635,
|
1483 |
+
"grad_norm": 3.563765719247629,
|
1484 |
+
"learning_rate": 2.4770898044938284e-05,
|
1485 |
+
"loss": 0.703,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.28277034912801363,
|
1490 |
+
"grad_norm": 1.9816905810381245,
|
1491 |
+
"learning_rate": 2.4722636586276522e-05,
|
1492 |
+
"loss": 0.7132,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.28410417152956086,
|
1497 |
+
"grad_norm": 4.0053115388283205,
|
1498 |
+
"learning_rate": 2.4674200930382712e-05,
|
1499 |
+
"loss": 0.6991,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.2854379939311081,
|
1504 |
+
"grad_norm": 1.9643538302216321,
|
1505 |
+
"learning_rate": 2.4625591945062326e-05,
|
1506 |
+
"loss": 0.7182,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.2867718163326553,
|
1511 |
+
"grad_norm": 1.7027289253737494,
|
1512 |
+
"learning_rate": 2.4576810501226318e-05,
|
1513 |
+
"loss": 0.6856,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.28810563873420253,
|
1518 |
+
"grad_norm": 3.394597130806682,
|
1519 |
+
"learning_rate": 2.4527857472875515e-05,
|
1520 |
+
"loss": 0.7013,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.28943946113574975,
|
1525 |
+
"grad_norm": 2.766786923916393,
|
1526 |
+
"learning_rate": 2.447873373708498e-05,
|
1527 |
+
"loss": 0.6913,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.29077328353729703,
|
1532 |
+
"grad_norm": 6.781532105937228,
|
1533 |
+
"learning_rate": 2.4429440173988275e-05,
|
1534 |
+
"loss": 0.7401,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.29210710593884426,
|
1539 |
+
"grad_norm": 2.6220209383444946,
|
1540 |
+
"learning_rate": 2.43799776667617e-05,
|
1541 |
+
"loss": 0.7287,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.2934409283403915,
|
1546 |
+
"grad_norm": 4.597566226152422,
|
1547 |
+
"learning_rate": 2.4330347101608492e-05,
|
1548 |
+
"loss": 0.6664,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.2947747507419387,
|
1553 |
+
"grad_norm": 3.15622915128866,
|
1554 |
+
"learning_rate": 2.428054936774289e-05,
|
1555 |
+
"loss": 0.6757,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.29610857314348593,
|
1560 |
+
"grad_norm": 3.5777836932521065,
|
1561 |
+
"learning_rate": 2.423058535737427e-05,
|
1562 |
+
"loss": 0.7396,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.29744239554503316,
|
1567 |
+
"grad_norm": 2.505384749600403,
|
1568 |
+
"learning_rate": 2.418045596569111e-05,
|
1569 |
+
"loss": 0.7156,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.29877621794658044,
|
1574 |
+
"grad_norm": 15.640998645324629,
|
1575 |
+
"learning_rate": 2.4130162090844976e-05,
|
1576 |
+
"loss": 0.7016,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.30011004034812766,
|
1581 |
+
"grad_norm": 6.1147200283733865,
|
1582 |
+
"learning_rate": 2.4079704633934427e-05,
|
1583 |
+
"loss": 0.6835,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.3014438627496749,
|
1588 |
+
"grad_norm": 2.4704828096249907,
|
1589 |
+
"learning_rate": 2.4029084498988864e-05,
|
1590 |
+
"loss": 0.717,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.3027776851512221,
|
1595 |
+
"grad_norm": 3.624817679194012,
|
1596 |
+
"learning_rate": 2.3978302592952332e-05,
|
1597 |
+
"loss": 0.6863,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.30411150755276933,
|
1602 |
+
"grad_norm": 7.1778372122735155,
|
1603 |
+
"learning_rate": 2.392735982566728e-05,
|
1604 |
+
"loss": 0.7057,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.30544532995431656,
|
1609 |
+
"grad_norm": 1.541203747230883,
|
1610 |
+
"learning_rate": 2.387625710985826e-05,
|
1611 |
+
"loss": 0.6755,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.30677915235586384,
|
1616 |
+
"grad_norm": 5.290753363343769,
|
1617 |
+
"learning_rate": 2.3824995361115552e-05,
|
1618 |
+
"loss": 0.7214,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.30811297475741106,
|
1623 |
+
"grad_norm": 11.18524078914846,
|
1624 |
+
"learning_rate": 2.3773575497878784e-05,
|
1625 |
+
"loss": 0.687,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.3094467971589583,
|
1630 |
+
"grad_norm": 2.8473409260968854,
|
1631 |
+
"learning_rate": 2.372199844142048e-05,
|
1632 |
+
"loss": 0.6588,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.3107806195605055,
|
1637 |
+
"grad_norm": 3.6509202763742894,
|
1638 |
+
"learning_rate": 2.3670265115829523e-05,
|
1639 |
+
"loss": 0.7146,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.31211444196205274,
|
1644 |
+
"grad_norm": 2.86323212169014,
|
1645 |
+
"learning_rate": 2.3618376447994633e-05,
|
1646 |
+
"loss": 0.6965,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.31344826436359996,
|
1651 |
+
"grad_norm": 1.6724444694024563,
|
1652 |
+
"learning_rate": 2.3566333367587737e-05,
|
1653 |
+
"loss": 0.6827,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.31478208676514724,
|
1658 |
+
"grad_norm": 3.7438462947121876,
|
1659 |
+
"learning_rate": 2.3514136807047318e-05,
|
1660 |
+
"loss": 0.677,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.31611590916669446,
|
1665 |
+
"grad_norm": 3.150319939971515,
|
1666 |
+
"learning_rate": 2.3461787701561724e-05,
|
1667 |
+
"loss": 0.6926,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.3174497315682417,
|
1672 |
+
"grad_norm": 1.9724696911512674,
|
1673 |
+
"learning_rate": 2.340928698905239e-05,
|
1674 |
+
"loss": 0.7269,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.3187835539697889,
|
1679 |
+
"grad_norm": 2.6615995505256604,
|
1680 |
+
"learning_rate": 2.335663561015704e-05,
|
1681 |
+
"loss": 0.719,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.32011737637133614,
|
1686 |
+
"grad_norm": 3.648818329043563,
|
1687 |
+
"learning_rate": 2.3303834508212845e-05,
|
1688 |
+
"loss": 0.6593,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.3214511987728834,
|
1693 |
+
"grad_norm": 5.032935766388129,
|
1694 |
+
"learning_rate": 2.325088462923951e-05,
|
1695 |
+
"loss": 0.7018,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.32278502117443064,
|
1700 |
+
"grad_norm": 5.116190153583237,
|
1701 |
+
"learning_rate": 2.319778692192233e-05,
|
1702 |
+
"loss": 0.6138,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.32411884357597787,
|
1707 |
+
"grad_norm": 8.77553429349065,
|
1708 |
+
"learning_rate": 2.3144542337595196e-05,
|
1709 |
+
"loss": 0.6995,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.3254526659775251,
|
1714 |
+
"grad_norm": 4.020402137418298,
|
1715 |
+
"learning_rate": 2.3091151830223537e-05,
|
1716 |
+
"loss": 0.6935,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.3267864883790723,
|
1721 |
+
"grad_norm": 2.326990350307363,
|
1722 |
+
"learning_rate": 2.3037616356387237e-05,
|
1723 |
+
"loss": 0.6657,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.32812031078061954,
|
1728 |
+
"grad_norm": 1.9450305290081706,
|
1729 |
+
"learning_rate": 2.2983936875263495e-05,
|
1730 |
+
"loss": 0.6884,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.3294541331821668,
|
1735 |
+
"grad_norm": 2.4083218262957407,
|
1736 |
+
"learning_rate": 2.2930114348609655e-05,
|
1737 |
+
"loss": 0.6324,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.33078795558371404,
|
1742 |
+
"grad_norm": 4.469293094525185,
|
1743 |
+
"learning_rate": 2.2876149740745935e-05,
|
1744 |
+
"loss": 0.7054,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.33212177798526127,
|
1749 |
+
"grad_norm": 3.0408327884382613,
|
1750 |
+
"learning_rate": 2.28220440185382e-05,
|
1751 |
+
"loss": 0.6996,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.3334556003868085,
|
1756 |
+
"grad_norm": 2.5340984000691273,
|
1757 |
+
"learning_rate": 2.2767798151380597e-05,
|
1758 |
+
"loss": 0.6908,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.3347894227883557,
|
1763 |
+
"grad_norm": 2.4867165525033,
|
1764 |
+
"learning_rate": 2.27134131111782e-05,
|
1765 |
+
"loss": 0.6838,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.33612324518990294,
|
1770 |
+
"grad_norm": 14.755496795057269,
|
1771 |
+
"learning_rate": 2.2658889872329628e-05,
|
1772 |
+
"loss": 0.7072,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.3374570675914502,
|
1777 |
+
"grad_norm": 11.498768616138861,
|
1778 |
+
"learning_rate": 2.2604229411709518e-05,
|
1779 |
+
"loss": 0.6837,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.33879088999299745,
|
1784 |
+
"grad_norm": 1.6627733851927542,
|
1785 |
+
"learning_rate": 2.25494327086511e-05,
|
1786 |
+
"loss": 0.6948,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.34012471239454467,
|
1791 |
+
"grad_norm": 4.465322393758394,
|
1792 |
+
"learning_rate": 2.2494500744928583e-05,
|
1793 |
+
"loss": 0.706,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.3414585347960919,
|
1798 |
+
"grad_norm": 2.5329140738676714,
|
1799 |
+
"learning_rate": 2.243943450473963e-05,
|
1800 |
+
"loss": 0.6652,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.3427923571976391,
|
1805 |
+
"grad_norm": 2.6213955428320963,
|
1806 |
+
"learning_rate": 2.2384234974687658e-05,
|
1807 |
+
"loss": 0.7123,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.34412617959918634,
|
1812 |
+
"grad_norm": 2.8450668136715827,
|
1813 |
+
"learning_rate": 2.2328903143764216e-05,
|
1814 |
+
"loss": 0.6748,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.3454600020007336,
|
1819 |
+
"grad_norm": 9.246863580911334,
|
1820 |
+
"learning_rate": 2.2273440003331237e-05,
|
1821 |
+
"loss": 0.6774,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.34679382440228085,
|
1826 |
+
"grad_norm": 2.610989556515575,
|
1827 |
+
"learning_rate": 2.2217846547103275e-05,
|
1828 |
+
"loss": 0.7042,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.3481276468038281,
|
1833 |
+
"grad_norm": 7.325969061692186,
|
1834 |
+
"learning_rate": 2.216212377112972e-05,
|
1835 |
+
"loss": 0.6834,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.3494614692053753,
|
1840 |
+
"grad_norm": 3.001379331751721,
|
1841 |
+
"learning_rate": 2.2106272673776934e-05,
|
1842 |
+
"loss": 0.7033,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.3507952916069225,
|
1847 |
+
"grad_norm": 3.463073346975308,
|
1848 |
+
"learning_rate": 2.2050294255710375e-05,
|
1849 |
+
"loss": 0.6839,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.35212911400846975,
|
1854 |
+
"grad_norm": 3.524564101951424,
|
1855 |
+
"learning_rate": 2.1994189519876663e-05,
|
1856 |
+
"loss": 0.6948,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.353462936410017,
|
1861 |
+
"grad_norm": 3.152341329769827,
|
1862 |
+
"learning_rate": 2.19379594714856e-05,
|
1863 |
+
"loss": 0.6767,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.35479675881156425,
|
1868 |
+
"grad_norm": 4.2343916663936305,
|
1869 |
+
"learning_rate": 2.188160511799219e-05,
|
1870 |
+
"loss": 0.6755,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.3561305812131115,
|
1875 |
+
"grad_norm": 2.7909676165285813,
|
1876 |
+
"learning_rate": 2.1825127469078555e-05,
|
1877 |
+
"loss": 0.6694,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.3574644036146587,
|
1882 |
+
"grad_norm": 1.8765416483232782,
|
1883 |
+
"learning_rate": 2.1768527536635868e-05,
|
1884 |
+
"loss": 0.7031,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.3587982260162059,
|
1889 |
+
"grad_norm": 13.262978009985517,
|
1890 |
+
"learning_rate": 2.171180633474621e-05,
|
1891 |
+
"loss": 0.7371,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.3601320484177532,
|
1896 |
+
"grad_norm": 3.886717400478723,
|
1897 |
+
"learning_rate": 2.1654964879664407e-05,
|
1898 |
+
"loss": 0.7109,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.3614658708193004,
|
1903 |
+
"grad_norm": 2.040560351248799,
|
1904 |
+
"learning_rate": 2.1598004189799826e-05,
|
1905 |
+
"loss": 0.7274,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.36279969322084765,
|
1910 |
+
"grad_norm": 24.610089275348535,
|
1911 |
+
"learning_rate": 2.1540925285698122e-05,
|
1912 |
+
"loss": 0.6886,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.3641335156223949,
|
1917 |
+
"grad_norm": 3.6439264742220216,
|
1918 |
+
"learning_rate": 2.148372919002295e-05,
|
1919 |
+
"loss": 0.681,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.3654673380239421,
|
1924 |
+
"grad_norm": 5.83580774778366,
|
1925 |
+
"learning_rate": 2.142641692753765e-05,
|
1926 |
+
"loss": 0.6502,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.3668011604254893,
|
1931 |
+
"grad_norm": 1.8530940550203352,
|
1932 |
+
"learning_rate": 2.1368989525086893e-05,
|
1933 |
+
"loss": 0.6854,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.3681349828270366,
|
1938 |
+
"grad_norm": 5.003536499561226,
|
1939 |
+
"learning_rate": 2.1311448011578255e-05,
|
1940 |
+
"loss": 0.6699,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.36946880522858383,
|
1945 |
+
"grad_norm": 2.6889933495770912,
|
1946 |
+
"learning_rate": 2.125379341796382e-05,
|
1947 |
+
"loss": 0.741,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.37080262763013105,
|
1952 |
+
"grad_norm": 2.0672372686575575,
|
1953 |
+
"learning_rate": 2.1196026777221684e-05,
|
1954 |
+
"loss": 0.693,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.3721364500316783,
|
1959 |
+
"grad_norm": 3.023122371840424,
|
1960 |
+
"learning_rate": 2.1138149124337448e-05,
|
1961 |
+
"loss": 0.7227,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.3734702724332255,
|
1966 |
+
"grad_norm": 5.98908480573641,
|
1967 |
+
"learning_rate": 2.108016149628569e-05,
|
1968 |
+
"loss": 0.6875,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.3748040948347727,
|
1973 |
+
"grad_norm": 13.324804502845906,
|
1974 |
+
"learning_rate": 2.102206493201137e-05,
|
1975 |
+
"loss": 0.6693,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.37613791723632,
|
1980 |
+
"grad_norm": 2.877158805709884,
|
1981 |
+
"learning_rate": 2.096386047241123e-05,
|
1982 |
+
"loss": 0.6752,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.37747173963786723,
|
1987 |
+
"grad_norm": 3.417018003930411,
|
1988 |
+
"learning_rate": 2.0905549160315116e-05,
|
1989 |
+
"loss": 0.6874,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.37880556203941446,
|
1994 |
+
"grad_norm": 6.197947611584602,
|
1995 |
+
"learning_rate": 2.084713204046734e-05,
|
1996 |
+
"loss": 0.6995,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.3801393844409617,
|
2001 |
+
"grad_norm": 2.4400537269180327,
|
2002 |
+
"learning_rate": 2.078861015950793e-05,
|
2003 |
+
"loss": 0.718,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.3814732068425089,
|
2008 |
+
"grad_norm": 3.4313321352162878,
|
2009 |
+
"learning_rate": 2.072998456595387e-05,
|
2010 |
+
"loss": 0.6928,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.38280702924405613,
|
2015 |
+
"grad_norm": 3.323108743280233,
|
2016 |
+
"learning_rate": 2.0671256310180334e-05,
|
2017 |
+
"loss": 0.7141,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.3841408516456034,
|
2022 |
+
"grad_norm": 2.270407423855968,
|
2023 |
+
"learning_rate": 2.0612426444401874e-05,
|
2024 |
+
"loss": 0.6677,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.38547467404715063,
|
2029 |
+
"grad_norm": 4.473087793045971,
|
2030 |
+
"learning_rate": 2.0553496022653535e-05,
|
2031 |
+
"loss": 0.706,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.38680849644869786,
|
2036 |
+
"grad_norm": 4.498504602131192,
|
2037 |
+
"learning_rate": 2.0494466100772006e-05,
|
2038 |
+
"loss": 0.6783,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.3881423188502451,
|
2043 |
+
"grad_norm": 1.8721168603816298,
|
2044 |
+
"learning_rate": 2.0435337736376677e-05,
|
2045 |
+
"loss": 0.7327,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.3894761412517923,
|
2050 |
+
"grad_norm": 2.1819398242824093,
|
2051 |
+
"learning_rate": 2.03761119888507e-05,
|
2052 |
+
"loss": 0.6798,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.39080996365333953,
|
2057 |
+
"grad_norm": 29.747303047069977,
|
2058 |
+
"learning_rate": 2.031678991932201e-05,
|
2059 |
+
"loss": 0.7045,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.3921437860548868,
|
2064 |
+
"grad_norm": 4.708328967247123,
|
2065 |
+
"learning_rate": 2.0257372590644314e-05,
|
2066 |
+
"loss": 0.6896,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.39347760845643404,
|
2071 |
+
"grad_norm": 2.873510721340991,
|
2072 |
+
"learning_rate": 2.0197861067378044e-05,
|
2073 |
+
"loss": 0.6802,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.39481143085798126,
|
2078 |
+
"grad_norm": 4.540574995423212,
|
2079 |
+
"learning_rate": 2.0138256415771275e-05,
|
2080 |
+
"loss": 0.6219,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3961452532595285,
|
2085 |
+
"grad_norm": 11.817372765224325,
|
2086 |
+
"learning_rate": 2.0078559703740654e-05,
|
2087 |
+
"loss": 0.65,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3974790756610757,
|
2092 |
+
"grad_norm": 11.004144754692504,
|
2093 |
+
"learning_rate": 2.0018772000852216e-05,
|
2094 |
+
"loss": 0.7056,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.398812898062623,
|
2099 |
+
"grad_norm": 1.7365475356133573,
|
2100 |
+
"learning_rate": 1.9958894378302265e-05,
|
2101 |
+
"loss": 0.6827,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.4001467204641702,
|
2106 |
+
"grad_norm": 4.31426545646336,
|
2107 |
+
"learning_rate": 1.989892790889817e-05,
|
2108 |
+
"loss": 0.6796,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.40148054286571744,
|
2113 |
+
"grad_norm": 2.534413468413497,
|
2114 |
+
"learning_rate": 1.9838873667039134e-05,
|
2115 |
+
"loss": 0.6825,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.40281436526726466,
|
2120 |
+
"grad_norm": 2.5821079814088,
|
2121 |
+
"learning_rate": 1.9778732728696937e-05,
|
2122 |
+
"loss": 0.6522,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.4041481876688119,
|
2127 |
+
"grad_norm": 10.45675108188373,
|
2128 |
+
"learning_rate": 1.9718506171396694e-05,
|
2129 |
+
"loss": 0.6752,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.4054820100703591,
|
2134 |
+
"grad_norm": 10.969680268488736,
|
2135 |
+
"learning_rate": 1.965819507419751e-05,
|
2136 |
+
"loss": 0.7195,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.4068158324719064,
|
2141 |
+
"grad_norm": 9.540053007670354,
|
2142 |
+
"learning_rate": 1.9597800517673165e-05,
|
2143 |
+
"loss": 0.6762,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.4081496548734536,
|
2148 |
+
"grad_norm": 8.551702443669248,
|
2149 |
+
"learning_rate": 1.9537323583892753e-05,
|
2150 |
+
"loss": 0.7292,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.40948347727500084,
|
2155 |
+
"grad_norm": 3.0994689178852903,
|
2156 |
+
"learning_rate": 1.9476765356401304e-05,
|
2157 |
+
"loss": 0.6764,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.41081729967654806,
|
2162 |
+
"grad_norm": 3.1013298812228163,
|
2163 |
+
"learning_rate": 1.9416126920200344e-05,
|
2164 |
+
"loss": 0.6484,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.4121511220780953,
|
2169 |
+
"grad_norm": 2.00628497131861,
|
2170 |
+
"learning_rate": 1.9355409361728482e-05,
|
2171 |
+
"loss": 0.7094,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.4134849444796425,
|
2176 |
+
"grad_norm": 5.224082004633703,
|
2177 |
+
"learning_rate": 1.9294613768841932e-05,
|
2178 |
+
"loss": 0.7279,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.4148187668811898,
|
2183 |
+
"grad_norm": 18.62631978728915,
|
2184 |
+
"learning_rate": 1.9233741230795022e-05,
|
2185 |
+
"loss": 0.662,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.416152589282737,
|
2190 |
+
"grad_norm": 3.6495526914982968,
|
2191 |
+
"learning_rate": 1.9172792838220686e-05,
|
2192 |
+
"loss": 0.6836,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.41748641168428424,
|
2197 |
+
"grad_norm": 2.304337917905853,
|
2198 |
+
"learning_rate": 1.9111769683110914e-05,
|
2199 |
+
"loss": 0.6901,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.41882023408583147,
|
2204 |
+
"grad_norm": 8.427846401703292,
|
2205 |
+
"learning_rate": 1.905067285879719e-05,
|
2206 |
+
"loss": 0.6606,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.4201540564873787,
|
2211 |
+
"grad_norm": 2.2306668115119104,
|
2212 |
+
"learning_rate": 1.8989503459930908e-05,
|
2213 |
+
"loss": 0.7434,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.4214878788889259,
|
2218 |
+
"grad_norm": 2.231586663842237,
|
2219 |
+
"learning_rate": 1.892826258246376e-05,
|
2220 |
+
"loss": 0.7184,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.4228217012904732,
|
2225 |
+
"grad_norm": 5.804571835994344,
|
2226 |
+
"learning_rate": 1.886695132362808e-05,
|
2227 |
+
"loss": 0.7073,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.4241555236920204,
|
2232 |
+
"grad_norm": 4.7472512172058785,
|
2233 |
+
"learning_rate": 1.8805570781917228e-05,
|
2234 |
+
"loss": 0.7102,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.42548934609356764,
|
2239 |
+
"grad_norm": 1.723627694530291,
|
2240 |
+
"learning_rate": 1.8744122057065856e-05,
|
2241 |
+
"loss": 0.6828,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.42682316849511487,
|
2246 |
+
"grad_norm": 1.9952068710149184,
|
2247 |
+
"learning_rate": 1.868260625003024e-05,
|
2248 |
+
"loss": 0.6545,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.4281569908966621,
|
2253 |
+
"grad_norm": 4.588444559005735,
|
2254 |
+
"learning_rate": 1.8621024462968553e-05,
|
2255 |
+
"loss": 0.67,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.4294908132982093,
|
2260 |
+
"grad_norm": 2.155634253115107,
|
2261 |
+
"learning_rate": 1.85593777992211e-05,
|
2262 |
+
"loss": 0.7173,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.4308246356997566,
|
2267 |
+
"grad_norm": 3.3412948579128194,
|
2268 |
+
"learning_rate": 1.849766736329056e-05,
|
2269 |
+
"loss": 0.6364,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.4321584581013038,
|
2274 |
+
"grad_norm": 2.1344417176214607,
|
2275 |
+
"learning_rate": 1.8435894260822208e-05,
|
2276 |
+
"loss": 0.6919,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.43349228050285105,
|
2281 |
+
"grad_norm": 3.8410669902748764,
|
2282 |
+
"learning_rate": 1.8374059598584084e-05,
|
2283 |
+
"loss": 0.6524,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.43482610290439827,
|
2288 |
+
"grad_norm": 2.609728029777106,
|
2289 |
+
"learning_rate": 1.831216448444717e-05,
|
2290 |
+
"loss": 0.688,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.4361599253059455,
|
2295 |
+
"grad_norm": 2.182084710285402,
|
2296 |
+
"learning_rate": 1.8250210027365562e-05,
|
2297 |
+
"loss": 0.7327,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.4374937477074928,
|
2302 |
+
"grad_norm": 1.0672619638672702,
|
2303 |
+
"learning_rate": 1.818819733735657e-05,
|
2304 |
+
"loss": 0.7137,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.43882757010904,
|
2309 |
+
"grad_norm": 1.7248236414002174,
|
2310 |
+
"learning_rate": 1.812612752548084e-05,
|
2311 |
+
"loss": 0.6848,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.4401613925105872,
|
2316 |
+
"grad_norm": 2.717100059326369,
|
2317 |
+
"learning_rate": 1.806400170382246e-05,
|
2318 |
+
"loss": 0.6582,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.44149521491213445,
|
2323 |
+
"grad_norm": 2.7420980324781348,
|
2324 |
+
"learning_rate": 1.8001820985469026e-05,
|
2325 |
+
"loss": 0.6976,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.4428290373136817,
|
2330 |
+
"grad_norm": 3.9917362204420357,
|
2331 |
+
"learning_rate": 1.7939586484491704e-05,
|
2332 |
+
"loss": 0.7259,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.4441628597152289,
|
2337 |
+
"grad_norm": 3.2371945093430514,
|
2338 |
+
"learning_rate": 1.787729931592525e-05,
|
2339 |
+
"loss": 0.6883,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.4454966821167762,
|
2344 |
+
"grad_norm": 2.439245137250377,
|
2345 |
+
"learning_rate": 1.781496059574807e-05,
|
2346 |
+
"loss": 0.6876,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.4468305045183234,
|
2351 |
+
"grad_norm": 4.525984025887397,
|
2352 |
+
"learning_rate": 1.7752571440862178e-05,
|
2353 |
+
"loss": 0.6724,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.4481643269198706,
|
2358 |
+
"grad_norm": 2.3388903272276518,
|
2359 |
+
"learning_rate": 1.7690132969073223e-05,
|
2360 |
+
"loss": 0.7065,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.44949814932141785,
|
2365 |
+
"grad_norm": 6.946538587379132,
|
2366 |
+
"learning_rate": 1.7627646299070457e-05,
|
2367 |
+
"loss": 0.6444,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.4508319717229651,
|
2372 |
+
"grad_norm": 1.5334789635428385,
|
2373 |
+
"learning_rate": 1.7565112550406663e-05,
|
2374 |
+
"loss": 0.6597,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.4521657941245123,
|
2379 |
+
"grad_norm": 1.7438745925855814,
|
2380 |
+
"learning_rate": 1.7502532843478134e-05,
|
2381 |
+
"loss": 0.736,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.4534996165260596,
|
2386 |
+
"grad_norm": 2.352884928297456,
|
2387 |
+
"learning_rate": 1.743990829950458e-05,
|
2388 |
+
"loss": 0.7209,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.4548334389276068,
|
2393 |
+
"grad_norm": 2.589791551987411,
|
2394 |
+
"learning_rate": 1.737724004050903e-05,
|
2395 |
+
"loss": 0.6873,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.45616726132915403,
|
2400 |
+
"grad_norm": 1.5018800238986845,
|
2401 |
+
"learning_rate": 1.731452918929774e-05,
|
2402 |
+
"loss": 0.6993,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.45750108373070125,
|
2407 |
+
"grad_norm": 1.618737845945941,
|
2408 |
+
"learning_rate": 1.7251776869440097e-05,
|
2409 |
+
"loss": 0.719,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.4588349061322485,
|
2414 |
+
"grad_norm": 4.764891120811521,
|
2415 |
+
"learning_rate": 1.718898420524845e-05,
|
2416 |
+
"loss": 0.7066,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.4601687285337957,
|
2421 |
+
"grad_norm": 30.008073864717016,
|
2422 |
+
"learning_rate": 1.7126152321757985e-05,
|
2423 |
+
"loss": 0.7234,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.461502550935343,
|
2428 |
+
"grad_norm": 4.718402571866902,
|
2429 |
+
"learning_rate": 1.7063282344706577e-05,
|
2430 |
+
"loss": 0.671,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.4628363733368902,
|
2435 |
+
"grad_norm": 3.279168331496427,
|
2436 |
+
"learning_rate": 1.7000375400514602e-05,
|
2437 |
+
"loss": 0.6748,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.46417019573843743,
|
2442 |
+
"grad_norm": 4.202866783860852,
|
2443 |
+
"learning_rate": 1.693743261626476e-05,
|
2444 |
+
"loss": 0.7135,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.46550401813998465,
|
2449 |
+
"grad_norm": 2.959211747400748,
|
2450 |
+
"learning_rate": 1.68744551196819e-05,
|
2451 |
+
"loss": 0.6684,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.4668378405415319,
|
2456 |
+
"grad_norm": 3.7208053935256085,
|
2457 |
+
"learning_rate": 1.6811444039112787e-05,
|
2458 |
+
"loss": 0.6842,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.4681716629430791,
|
2463 |
+
"grad_norm": 1.8411337183473255,
|
2464 |
+
"learning_rate": 1.6748400503505905e-05,
|
2465 |
+
"loss": 0.6796,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.4695054853446264,
|
2470 |
+
"grad_norm": 1.5569024338481647,
|
2471 |
+
"learning_rate": 1.6685325642391223e-05,
|
2472 |
+
"loss": 0.7357,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.4708393077461736,
|
2477 |
+
"grad_norm": 2.30459532472586,
|
2478 |
+
"learning_rate": 1.662222058585996e-05,
|
2479 |
+
"loss": 0.6825,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.47217313014772083,
|
2484 |
+
"grad_norm": 1.6593076444414934,
|
2485 |
+
"learning_rate": 1.6559086464544334e-05,
|
2486 |
+
"loss": 0.7067,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.47350695254926806,
|
2491 |
+
"grad_norm": 2.6738168898709356,
|
2492 |
+
"learning_rate": 1.6495924409597305e-05,
|
2493 |
+
"loss": 0.665,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.4748407749508153,
|
2498 |
+
"grad_norm": 10.974918207024547,
|
2499 |
+
"learning_rate": 1.6432735552672317e-05,
|
2500 |
+
"loss": 0.705,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.4761745973523625,
|
2505 |
+
"grad_norm": 4.279092732465272,
|
2506 |
+
"learning_rate": 1.636952102590301e-05,
|
2507 |
+
"loss": 0.6858,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.4775084197539098,
|
2512 |
+
"grad_norm": 8.958608602390235,
|
2513 |
+
"learning_rate": 1.630628196188295e-05,
|
2514 |
+
"loss": 0.7022,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.478842242155457,
|
2519 |
+
"grad_norm": 1.2316277268276075,
|
2520 |
+
"learning_rate": 1.6243019493645315e-05,
|
2521 |
+
"loss": 0.7091,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.48017606455700423,
|
2526 |
+
"grad_norm": 1.6977852924595596,
|
2527 |
+
"learning_rate": 1.617973475464262e-05,
|
2528 |
+
"loss": 0.6725,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.48150988695855146,
|
2533 |
+
"grad_norm": 9.102696583046576,
|
2534 |
+
"learning_rate": 1.6116428878726396e-05,
|
2535 |
+
"loss": 0.706,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.4828437093600987,
|
2540 |
+
"grad_norm": 2.983654314671525,
|
2541 |
+
"learning_rate": 1.6053103000126874e-05,
|
2542 |
+
"loss": 0.6663,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.48417753176164596,
|
2547 |
+
"grad_norm": 2.9273555172026304,
|
2548 |
+
"learning_rate": 1.598975825343267e-05,
|
2549 |
+
"loss": 0.6986,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.4855113541631932,
|
2554 |
+
"grad_norm": 2.4687475856334613,
|
2555 |
+
"learning_rate": 1.5926395773570447e-05,
|
2556 |
+
"loss": 0.7192,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.4868451765647404,
|
2561 |
+
"grad_norm": 4.171039626246759,
|
2562 |
+
"learning_rate": 1.5863016695784604e-05,
|
2563 |
+
"loss": 0.6702,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.48817899896628764,
|
2568 |
+
"grad_norm": 3.8655482044779337,
|
2569 |
+
"learning_rate": 1.5799622155616887e-05,
|
2570 |
+
"loss": 0.6568,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.48951282136783486,
|
2575 |
+
"grad_norm": 2.8245022157946362,
|
2576 |
+
"learning_rate": 1.5736213288886112e-05,
|
2577 |
+
"loss": 0.7075,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.4908466437693821,
|
2582 |
+
"grad_norm": 2.1969432272158556,
|
2583 |
+
"learning_rate": 1.567279123166776e-05,
|
2584 |
+
"loss": 0.7043,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.49218046617092936,
|
2589 |
+
"grad_norm": 3.7154807458182835,
|
2590 |
+
"learning_rate": 1.560935712027364e-05,
|
2591 |
+
"loss": 0.6467,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.4935142885724766,
|
2596 |
+
"grad_norm": 4.060155573527941,
|
2597 |
+
"learning_rate": 1.5545912091231543e-05,
|
2598 |
+
"loss": 0.6957,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.4948481109740238,
|
2603 |
+
"grad_norm": 2.057087008440973,
|
2604 |
+
"learning_rate": 1.548245728126486e-05,
|
2605 |
+
"loss": 0.6656,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.49618193337557104,
|
2610 |
+
"grad_norm": 1.975534767472513,
|
2611 |
+
"learning_rate": 1.5418993827272224e-05,
|
2612 |
+
"loss": 0.6867,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.49751575577711826,
|
2617 |
+
"grad_norm": 11.237169875747464,
|
2618 |
+
"learning_rate": 1.5355522866307144e-05,
|
2619 |
+
"loss": 0.693,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.4988495781786655,
|
2624 |
+
"grad_norm": 2.7505125088389066,
|
2625 |
+
"learning_rate": 1.529204553555762e-05,
|
2626 |
+
"loss": 0.6715,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.5001834005802127,
|
2631 |
+
"grad_norm": 14.47964311360144,
|
2632 |
+
"learning_rate": 1.522856297232579e-05,
|
2633 |
+
"loss": 0.6638,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.5015172229817599,
|
2638 |
+
"grad_norm": 1.4576903787797197,
|
2639 |
+
"learning_rate": 1.5165076314007529e-05,
|
2640 |
+
"loss": 0.6461,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.5028510453833072,
|
2645 |
+
"grad_norm": 4.190097060433623,
|
2646 |
+
"learning_rate": 1.5101586698072095e-05,
|
2647 |
+
"loss": 0.6997,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.5041848677848545,
|
2652 |
+
"grad_norm": 2.6358802196743887,
|
2653 |
+
"learning_rate": 1.5038095262041725e-05,
|
2654 |
+
"loss": 0.6805,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.5055186901864017,
|
2659 |
+
"grad_norm": 2.9885793100944484,
|
2660 |
+
"learning_rate": 1.4974603143471268e-05,
|
2661 |
+
"loss": 0.663,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.506852512587949,
|
2666 |
+
"grad_norm": 3.364287860442736,
|
2667 |
+
"learning_rate": 1.4911111479927804e-05,
|
2668 |
+
"loss": 0.6851,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.5081863349894962,
|
2673 |
+
"grad_norm": 6.415730527817265,
|
2674 |
+
"learning_rate": 1.4847621408970266e-05,
|
2675 |
+
"loss": 0.6544,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.5095201573910434,
|
2680 |
+
"grad_norm": 1.6327349630681778,
|
2681 |
+
"learning_rate": 1.4784134068129043e-05,
|
2682 |
+
"loss": 0.6629,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.5108539797925906,
|
2687 |
+
"grad_norm": 3.0622996050606783,
|
2688 |
+
"learning_rate": 1.4720650594885614e-05,
|
2689 |
+
"loss": 0.6651,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.5121878021941378,
|
2694 |
+
"grad_norm": 5.445942430441996,
|
2695 |
+
"learning_rate": 1.4657172126652167e-05,
|
2696 |
+
"loss": 0.664,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.5135216245956851,
|
2701 |
+
"grad_norm": 4.518334654823446,
|
2702 |
+
"learning_rate": 1.459369980075121e-05,
|
2703 |
+
"loss": 0.6959,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.5148554469972323,
|
2708 |
+
"grad_norm": 1.8471627413065406,
|
2709 |
+
"learning_rate": 1.4530234754395207e-05,
|
2710 |
+
"loss": 0.6774,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.5161892693987795,
|
2715 |
+
"grad_norm": 3.6484122755334525,
|
2716 |
+
"learning_rate": 1.4466778124666192e-05,
|
2717 |
+
"loss": 0.6825,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.5175230918003267,
|
2722 |
+
"grad_norm": 2.087118207544068,
|
2723 |
+
"learning_rate": 1.4403331048495404e-05,
|
2724 |
+
"loss": 0.6985,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.5188569142018741,
|
2729 |
+
"grad_norm": 11.878313425481934,
|
2730 |
+
"learning_rate": 1.4339894662642914e-05,
|
2731 |
+
"loss": 0.6764,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.5201907366034213,
|
2736 |
+
"grad_norm": 2.5453717997032115,
|
2737 |
+
"learning_rate": 1.4276470103677257e-05,
|
2738 |
+
"loss": 0.7091,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.5215245590049685,
|
2743 |
+
"grad_norm": 4.791248513372535,
|
2744 |
+
"learning_rate": 1.4213058507955072e-05,
|
2745 |
+
"loss": 0.644,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.5228583814065157,
|
2750 |
+
"grad_norm": 2.1955258954683545,
|
2751 |
+
"learning_rate": 1.4149661011600734e-05,
|
2752 |
+
"loss": 0.6954,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.524192203808063,
|
2757 |
+
"grad_norm": 3.5143987933185676,
|
2758 |
+
"learning_rate": 1.4086278750486017e-05,
|
2759 |
+
"loss": 0.6848,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.5255260262096102,
|
2764 |
+
"grad_norm": 3.168504700204386,
|
2765 |
+
"learning_rate": 1.4022912860209709e-05,
|
2766 |
+
"loss": 0.6752,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.5268598486111574,
|
2771 |
+
"grad_norm": 1.9655682723891459,
|
2772 |
+
"learning_rate": 1.3959564476077308e-05,
|
2773 |
+
"loss": 0.6904,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.5281936710127046,
|
2778 |
+
"grad_norm": 1.6897897373972772,
|
2779 |
+
"learning_rate": 1.389623473308065e-05,
|
2780 |
+
"loss": 0.6929,
|
2781 |
+
"step": 3960
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.5295274934142519,
|
2785 |
+
"grad_norm": 4.400154605229998,
|
2786 |
+
"learning_rate": 1.3832924765877587e-05,
|
2787 |
+
"loss": 0.726,
|
2788 |
+
"step": 3970
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.5308613158157991,
|
2792 |
+
"grad_norm": 2.790842978581456,
|
2793 |
+
"learning_rate": 1.3769635708771654e-05,
|
2794 |
+
"loss": 0.6724,
|
2795 |
+
"step": 3980
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.5321951382173463,
|
2799 |
+
"grad_norm": 1.5712798066752716,
|
2800 |
+
"learning_rate": 1.3706368695691745e-05,
|
2801 |
+
"loss": 0.6703,
|
2802 |
+
"step": 3990
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.5335289606188935,
|
2806 |
+
"grad_norm": 5.340886291219129,
|
2807 |
+
"learning_rate": 1.3643124860171801e-05,
|
2808 |
+
"loss": 0.6595,
|
2809 |
+
"step": 4000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.5348627830204409,
|
2813 |
+
"grad_norm": 1.985940330857511,
|
2814 |
+
"learning_rate": 1.35799053353305e-05,
|
2815 |
+
"loss": 0.6892,
|
2816 |
+
"step": 4010
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.5361966054219881,
|
2820 |
+
"grad_norm": 3.917331449757074,
|
2821 |
+
"learning_rate": 1.3516711253850949e-05,
|
2822 |
+
"loss": 0.6417,
|
2823 |
+
"step": 4020
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.5375304278235353,
|
2827 |
+
"grad_norm": 1.66962823795828,
|
2828 |
+
"learning_rate": 1.3453543747960393e-05,
|
2829 |
+
"loss": 0.6784,
|
2830 |
+
"step": 4030
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.5388642502250826,
|
2834 |
+
"grad_norm": 4.181035760200595,
|
2835 |
+
"learning_rate": 1.3390403949409943e-05,
|
2836 |
+
"loss": 0.7115,
|
2837 |
+
"step": 4040
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.5401980726266298,
|
2841 |
+
"grad_norm": 2.4193575665243214,
|
2842 |
+
"learning_rate": 1.3327292989454273e-05,
|
2843 |
+
"loss": 0.7104,
|
2844 |
+
"step": 4050
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.541531895028177,
|
2848 |
+
"grad_norm": 2.0442192962046275,
|
2849 |
+
"learning_rate": 1.3264211998831374e-05,
|
2850 |
+
"loss": 0.7008,
|
2851 |
+
"step": 4060
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.5428657174297242,
|
2855 |
+
"grad_norm": 3.0689852808863183,
|
2856 |
+
"learning_rate": 1.3201162107742285e-05,
|
2857 |
+
"loss": 0.677,
|
2858 |
+
"step": 4070
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.5441995398312715,
|
2862 |
+
"grad_norm": 2.22632841251654,
|
2863 |
+
"learning_rate": 1.3138144445830841e-05,
|
2864 |
+
"loss": 0.6223,
|
2865 |
+
"step": 4080
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.5455333622328187,
|
2869 |
+
"grad_norm": 8.813265719863766,
|
2870 |
+
"learning_rate": 1.3075160142163442e-05,
|
2871 |
+
"loss": 0.6791,
|
2872 |
+
"step": 4090
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.5468671846343659,
|
2876 |
+
"grad_norm": 2.461550778463616,
|
2877 |
+
"learning_rate": 1.3012210325208818e-05,
|
2878 |
+
"loss": 0.7165,
|
2879 |
+
"step": 4100
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.5482010070359131,
|
2883 |
+
"grad_norm": 2.1304508310591896,
|
2884 |
+
"learning_rate": 1.2949296122817813e-05,
|
2885 |
+
"loss": 0.6905,
|
2886 |
+
"step": 4110
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.5495348294374603,
|
2890 |
+
"grad_norm": 2.1733622775851535,
|
2891 |
+
"learning_rate": 1.2886418662203174e-05,
|
2892 |
+
"loss": 0.6963,
|
2893 |
+
"step": 4120
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.5508686518390077,
|
2897 |
+
"grad_norm": 2.654530675610581,
|
2898 |
+
"learning_rate": 1.282357906991936e-05,
|
2899 |
+
"loss": 0.6796,
|
2900 |
+
"step": 4130
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.5522024742405549,
|
2904 |
+
"grad_norm": 2.6976858995246085,
|
2905 |
+
"learning_rate": 1.276077847184236e-05,
|
2906 |
+
"loss": 0.6922,
|
2907 |
+
"step": 4140
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.5535362966421021,
|
2911 |
+
"grad_norm": 2.5591371381474857,
|
2912 |
+
"learning_rate": 1.2698017993149504e-05,
|
2913 |
+
"loss": 0.7047,
|
2914 |
+
"step": 4150
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.5548701190436494,
|
2918 |
+
"grad_norm": 6.439964637422321,
|
2919 |
+
"learning_rate": 1.2635298758299336e-05,
|
2920 |
+
"loss": 0.6722,
|
2921 |
+
"step": 4160
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.5562039414451966,
|
2925 |
+
"grad_norm": 1.6222259612163727,
|
2926 |
+
"learning_rate": 1.2572621891011426e-05,
|
2927 |
+
"loss": 0.6646,
|
2928 |
+
"step": 4170
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.5575377638467438,
|
2932 |
+
"grad_norm": 3.410425968580818,
|
2933 |
+
"learning_rate": 1.2509988514246272e-05,
|
2934 |
+
"loss": 0.6894,
|
2935 |
+
"step": 4180
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.558871586248291,
|
2939 |
+
"grad_norm": 2.7111542804682327,
|
2940 |
+
"learning_rate": 1.2447399750185166e-05,
|
2941 |
+
"loss": 0.7196,
|
2942 |
+
"step": 4190
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.5602054086498383,
|
2946 |
+
"grad_norm": 3.3657872237953868,
|
2947 |
+
"learning_rate": 1.2384856720210086e-05,
|
2948 |
+
"loss": 0.7052,
|
2949 |
+
"step": 4200
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.5615392310513855,
|
2953 |
+
"grad_norm": 3.4383001609998143,
|
2954 |
+
"learning_rate": 1.2322360544883608e-05,
|
2955 |
+
"loss": 0.664,
|
2956 |
+
"step": 4210
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.5628730534529327,
|
2960 |
+
"grad_norm": 4.31412552867304,
|
2961 |
+
"learning_rate": 1.2259912343928831e-05,
|
2962 |
+
"loss": 0.6923,
|
2963 |
+
"step": 4220
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.5642068758544799,
|
2967 |
+
"grad_norm": 2.9738159323747655,
|
2968 |
+
"learning_rate": 1.2197513236209312e-05,
|
2969 |
+
"loss": 0.6787,
|
2970 |
+
"step": 4230
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.5655406982560273,
|
2974 |
+
"grad_norm": 14.42279175461777,
|
2975 |
+
"learning_rate": 1.213516433970902e-05,
|
2976 |
+
"loss": 0.7313,
|
2977 |
+
"step": 4240
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.5668745206575745,
|
2981 |
+
"grad_norm": 2.6156276324588195,
|
2982 |
+
"learning_rate": 1.2072866771512306e-05,
|
2983 |
+
"loss": 0.6856,
|
2984 |
+
"step": 4250
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.5682083430591217,
|
2988 |
+
"grad_norm": 2.692794641012978,
|
2989 |
+
"learning_rate": 1.201062164778389e-05,
|
2990 |
+
"loss": 0.6587,
|
2991 |
+
"step": 4260
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.5695421654606689,
|
2995 |
+
"grad_norm": 3.01896569407463,
|
2996 |
+
"learning_rate": 1.1948430083748864e-05,
|
2997 |
+
"loss": 0.7225,
|
2998 |
+
"step": 4270
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.5708759878622162,
|
3002 |
+
"grad_norm": 2.266424840293995,
|
3003 |
+
"learning_rate": 1.1886293193672707e-05,
|
3004 |
+
"loss": 0.6847,
|
3005 |
+
"step": 4280
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.5722098102637634,
|
3009 |
+
"grad_norm": 2.2789387948762987,
|
3010 |
+
"learning_rate": 1.1824212090841321e-05,
|
3011 |
+
"loss": 0.7011,
|
3012 |
+
"step": 4290
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.5735436326653106,
|
3016 |
+
"grad_norm": 2.826447974943076,
|
3017 |
+
"learning_rate": 1.1762187887541088e-05,
|
3018 |
+
"loss": 0.689,
|
3019 |
+
"step": 4300
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.5748774550668578,
|
3023 |
+
"grad_norm": 2.565293440960005,
|
3024 |
+
"learning_rate": 1.1700221695038944e-05,
|
3025 |
+
"loss": 0.7077,
|
3026 |
+
"step": 4310
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.5762112774684051,
|
3030 |
+
"grad_norm": 4.459154190124916,
|
3031 |
+
"learning_rate": 1.1638314623562459e-05,
|
3032 |
+
"loss": 0.6885,
|
3033 |
+
"step": 4320
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.5775450998699523,
|
3037 |
+
"grad_norm": 1.8187338733285852,
|
3038 |
+
"learning_rate": 1.1576467782279953e-05,
|
3039 |
+
"loss": 0.7103,
|
3040 |
+
"step": 4330
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.5788789222714995,
|
3044 |
+
"grad_norm": 4.078050868504266,
|
3045 |
+
"learning_rate": 1.1514682279280621e-05,
|
3046 |
+
"loss": 0.6742,
|
3047 |
+
"step": 4340
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.5802127446730467,
|
3051 |
+
"grad_norm": 2.4612673583806233,
|
3052 |
+
"learning_rate": 1.1452959221554684e-05,
|
3053 |
+
"loss": 0.6941,
|
3054 |
+
"step": 4350
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.5815465670745941,
|
3058 |
+
"grad_norm": 8.05059787591381,
|
3059 |
+
"learning_rate": 1.1391299714973553e-05,
|
3060 |
+
"loss": 0.7072,
|
3061 |
+
"step": 4360
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.5828803894761413,
|
3065 |
+
"grad_norm": 5.041675641180621,
|
3066 |
+
"learning_rate": 1.1329704864270005e-05,
|
3067 |
+
"loss": 0.6914,
|
3068 |
+
"step": 4370
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.5842142118776885,
|
3072 |
+
"grad_norm": 3.8176735967050672,
|
3073 |
+
"learning_rate": 1.1268175773018409e-05,
|
3074 |
+
"loss": 0.6489,
|
3075 |
+
"step": 4380
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.5855480342792357,
|
3079 |
+
"grad_norm": 2.068471874891413,
|
3080 |
+
"learning_rate": 1.1206713543614942e-05,
|
3081 |
+
"loss": 0.7182,
|
3082 |
+
"step": 4390
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.586881856680783,
|
3086 |
+
"grad_norm": 4.7154770167485065,
|
3087 |
+
"learning_rate": 1.1145319277257834e-05,
|
3088 |
+
"loss": 0.6961,
|
3089 |
+
"step": 4400
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.5882156790823302,
|
3093 |
+
"grad_norm": 3.3453200032391917,
|
3094 |
+
"learning_rate": 1.108399407392765e-05,
|
3095 |
+
"loss": 0.701,
|
3096 |
+
"step": 4410
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.5895495014838774,
|
3100 |
+
"grad_norm": 3.462978751346215,
|
3101 |
+
"learning_rate": 1.1022739032367572e-05,
|
3102 |
+
"loss": 0.6504,
|
3103 |
+
"step": 4420
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.5908833238854246,
|
3107 |
+
"grad_norm": 3.9283885591229075,
|
3108 |
+
"learning_rate": 1.0961555250063718e-05,
|
3109 |
+
"loss": 0.7025,
|
3110 |
+
"step": 4430
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.5922171462869719,
|
3114 |
+
"grad_norm": 2.2363832425317463,
|
3115 |
+
"learning_rate": 1.090044382322548e-05,
|
3116 |
+
"loss": 0.7106,
|
3117 |
+
"step": 4440
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.5935509686885191,
|
3121 |
+
"grad_norm": 2.4683539157329544,
|
3122 |
+
"learning_rate": 1.083940584676588e-05,
|
3123 |
+
"loss": 0.6919,
|
3124 |
+
"step": 4450
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.5948847910900663,
|
3128 |
+
"grad_norm": 1.6027050129978238,
|
3129 |
+
"learning_rate": 1.077844241428195e-05,
|
3130 |
+
"loss": 0.6579,
|
3131 |
+
"step": 4460
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.5962186134916136,
|
3135 |
+
"grad_norm": 4.272201666240297,
|
3136 |
+
"learning_rate": 1.071755461803515e-05,
|
3137 |
+
"loss": 0.6992,
|
3138 |
+
"step": 4470
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.5975524358931609,
|
3142 |
+
"grad_norm": 4.847908056514074,
|
3143 |
+
"learning_rate": 1.0656743548931784e-05,
|
3144 |
+
"loss": 0.6858,
|
3145 |
+
"step": 4480
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.5988862582947081,
|
3149 |
+
"grad_norm": 1.899776347699883,
|
3150 |
+
"learning_rate": 1.0596010296503469e-05,
|
3151 |
+
"loss": 0.7175,
|
3152 |
+
"step": 4490
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.6002200806962553,
|
3156 |
+
"grad_norm": 3.6851504324405533,
|
3157 |
+
"learning_rate": 1.0535355948887598e-05,
|
3158 |
+
"loss": 0.6731,
|
3159 |
+
"step": 4500
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.6015539030978025,
|
3163 |
+
"grad_norm": 20.935216614062877,
|
3164 |
+
"learning_rate": 1.0474781592807854e-05,
|
3165 |
+
"loss": 0.6548,
|
3166 |
+
"step": 4510
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.6028877254993498,
|
3170 |
+
"grad_norm": 5.577424675925709,
|
3171 |
+
"learning_rate": 1.0414288313554746e-05,
|
3172 |
+
"loss": 0.7263,
|
3173 |
+
"step": 4520
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.604221547900897,
|
3177 |
+
"grad_norm": 2.9726973141053334,
|
3178 |
+
"learning_rate": 1.0353877194966152e-05,
|
3179 |
+
"loss": 0.7446,
|
3180 |
+
"step": 4530
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.6055553703024442,
|
3184 |
+
"grad_norm": 2.021480129071628,
|
3185 |
+
"learning_rate": 1.0293549319407901e-05,
|
3186 |
+
"loss": 0.7137,
|
3187 |
+
"step": 4540
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.6068891927039914,
|
3191 |
+
"grad_norm": 1.9390208520343517,
|
3192 |
+
"learning_rate": 1.0233305767754391e-05,
|
3193 |
+
"loss": 0.6998,
|
3194 |
+
"step": 4550
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.6082230151055387,
|
3198 |
+
"grad_norm": 2.2439008274229337,
|
3199 |
+
"learning_rate": 1.0173147619369212e-05,
|
3200 |
+
"loss": 0.6977,
|
3201 |
+
"step": 4560
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.6095568375070859,
|
3205 |
+
"grad_norm": 3.002628922946286,
|
3206 |
+
"learning_rate": 1.0113075952085815e-05,
|
3207 |
+
"loss": 0.7119,
|
3208 |
+
"step": 4570
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.6108906599086331,
|
3212 |
+
"grad_norm": 1.8784698804400835,
|
3213 |
+
"learning_rate": 1.0053091842188196e-05,
|
3214 |
+
"loss": 0.6813,
|
3215 |
+
"step": 4580
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.6122244823101805,
|
3219 |
+
"grad_norm": 3.6775461109208702,
|
3220 |
+
"learning_rate": 9.993196364391614e-06,
|
3221 |
+
"loss": 0.6963,
|
3222 |
+
"step": 4590
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.6135583047117277,
|
3226 |
+
"grad_norm": 3.0082378136289636,
|
3227 |
+
"learning_rate": 9.93339059182334e-06,
|
3228 |
+
"loss": 0.6761,
|
3229 |
+
"step": 4600
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.6148921271132749,
|
3233 |
+
"grad_norm": 2.0259105048263297,
|
3234 |
+
"learning_rate": 9.873675596003424e-06,
|
3235 |
+
"loss": 0.6645,
|
3236 |
+
"step": 4610
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.6162259495148221,
|
3240 |
+
"grad_norm": 7.087002002369676,
|
3241 |
+
"learning_rate": 9.8140524468255e-06,
|
3242 |
+
"loss": 0.6836,
|
3243 |
+
"step": 4620
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.6175597719163693,
|
3247 |
+
"grad_norm": 6.82917662319771,
|
3248 |
+
"learning_rate": 9.754522212537614e-06,
|
3249 |
+
"loss": 0.6546,
|
3250 |
+
"step": 4630
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.6188935943179166,
|
3254 |
+
"grad_norm": 2.7798504683532546,
|
3255 |
+
"learning_rate": 9.695085959723088e-06,
|
3256 |
+
"loss": 0.6879,
|
3257 |
+
"step": 4640
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.6202274167194638,
|
3261 |
+
"grad_norm": 2.9169362806410124,
|
3262 |
+
"learning_rate": 9.63574475328141e-06,
|
3263 |
+
"loss": 0.7287,
|
3264 |
+
"step": 4650
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.621561239121011,
|
3268 |
+
"grad_norm": 1.9790125803612642,
|
3269 |
+
"learning_rate": 9.576499656409158e-06,
|
3270 |
+
"loss": 0.6933,
|
3271 |
+
"step": 4660
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.6228950615225582,
|
3275 |
+
"grad_norm": 3.533798783312709,
|
3276 |
+
"learning_rate": 9.517351730580939e-06,
|
3277 |
+
"loss": 0.6763,
|
3278 |
+
"step": 4670
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.6242288839241055,
|
3282 |
+
"grad_norm": 4.906070778847422,
|
3283 |
+
"learning_rate": 9.458302035530384e-06,
|
3284 |
+
"loss": 0.7089,
|
3285 |
+
"step": 4680
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.6255627063256527,
|
3289 |
+
"grad_norm": 3.448200148869349,
|
3290 |
+
"learning_rate": 9.399351629231154e-06,
|
3291 |
+
"loss": 0.6911,
|
3292 |
+
"step": 4690
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.6268965287271999,
|
3296 |
+
"grad_norm": 7.159835250493477,
|
3297 |
+
"learning_rate": 9.340501567877989e-06,
|
3298 |
+
"loss": 0.6387,
|
3299 |
+
"step": 4700
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.6282303511287473,
|
3303 |
+
"grad_norm": 7.692987979738203,
|
3304 |
+
"learning_rate": 9.281752905867778e-06,
|
3305 |
+
"loss": 0.6239,
|
3306 |
+
"step": 4710
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.6295641735302945,
|
3310 |
+
"grad_norm": 3.0193719069272187,
|
3311 |
+
"learning_rate": 9.223106695780677e-06,
|
3312 |
+
"loss": 0.6755,
|
3313 |
+
"step": 4720
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.6308979959318417,
|
3317 |
+
"grad_norm": 2.31533598338176,
|
3318 |
+
"learning_rate": 9.164563988361242e-06,
|
3319 |
+
"loss": 0.6772,
|
3320 |
+
"step": 4730
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.6322318183333889,
|
3324 |
+
"grad_norm": 4.426498530040442,
|
3325 |
+
"learning_rate": 9.106125832499604e-06,
|
3326 |
+
"loss": 0.689,
|
3327 |
+
"step": 4740
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.6335656407349362,
|
3331 |
+
"grad_norm": 3.055489437274157,
|
3332 |
+
"learning_rate": 9.047793275212686e-06,
|
3333 |
+
"loss": 0.687,
|
3334 |
+
"step": 4750
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.6348994631364834,
|
3338 |
+
"grad_norm": 7.12383434732346,
|
3339 |
+
"learning_rate": 8.989567361625427e-06,
|
3340 |
+
"loss": 0.6604,
|
3341 |
+
"step": 4760
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.6362332855380306,
|
3345 |
+
"grad_norm": 2.6553339556706788,
|
3346 |
+
"learning_rate": 8.931449134952075e-06,
|
3347 |
+
"loss": 0.6866,
|
3348 |
+
"step": 4770
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.6375671079395778,
|
3352 |
+
"grad_norm": 3.1179277884273806,
|
3353 |
+
"learning_rate": 8.873439636477484e-06,
|
3354 |
+
"loss": 0.6599,
|
3355 |
+
"step": 4780
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.638900930341125,
|
3359 |
+
"grad_norm": 2.4632186731676993,
|
3360 |
+
"learning_rate": 8.815539905538459e-06,
|
3361 |
+
"loss": 0.6957,
|
3362 |
+
"step": 4790
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.6402347527426723,
|
3366 |
+
"grad_norm": 2.243620092515075,
|
3367 |
+
"learning_rate": 8.757750979505137e-06,
|
3368 |
+
"loss": 0.678,
|
3369 |
+
"step": 4800
|
3370 |
+
}
|
3371 |
+
],
|
3372 |
+
"logging_steps": 10,
|
3373 |
+
"max_steps": 7497,
|
3374 |
+
"num_input_tokens_seen": 0,
|
3375 |
+
"num_train_epochs": 1,
|
3376 |
+
"save_steps": 400,
|
3377 |
+
"stateful_callbacks": {
|
3378 |
+
"TrainerControl": {
|
3379 |
+
"args": {
|
3380 |
+
"should_epoch_stop": false,
|
3381 |
+
"should_evaluate": false,
|
3382 |
+
"should_log": false,
|
3383 |
+
"should_save": true,
|
3384 |
+
"should_training_stop": false
|
3385 |
+
},
|
3386 |
+
"attributes": {}
|
3387 |
+
}
|
3388 |
+
},
|
3389 |
+
"total_flos": 1.3121138833175347e+19,
|
3390 |
+
"train_batch_size": 4,
|
3391 |
+
"trial_name": null,
|
3392 |
+
"trial_params": null
|
3393 |
+
}
|
checkpoint-4800/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-4800/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-5200/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-5200/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-5200/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fe6b35a36052b418dbc661e5b43146baf90035a070581ad9027b43feff82048
|
3 |
+
size 469105640
|
checkpoint-5200/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step5200
|
checkpoint-5200/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-5200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8239e9ba599fb3f8c07a27e2bf432f3f3fe65fa260f6397c481fbe3d47e50f17
|
3 |
+
size 14960
|
checkpoint-5200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55a35d26128efbc8f239a93f95180b2b2e8ce7bfe4af3e2ade55a34a406cff21
|
3 |
+
size 14960
|
checkpoint-5200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bc2f6c006c7d06b0b88f1a30e172b5bb08f404439bddaae8618520d08049288
|
3 |
+
size 14960
|
checkpoint-5200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:320efe2e611cf0cc85ed1814fa2c63a56085e4ddfcba4c200bf26364609b0e5a
|
3 |
+
size 14960
|
checkpoint-5200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e16e0f66d1662ea9e036f472cb373602f897fc82181a83773e137aab8d410d38
|
3 |
+
size 1064
|
checkpoint-5200/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-5200/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-5200/trainer_state.json
ADDED
@@ -0,0 +1,3673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6935876488045617,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 5200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.16139251058721532,
|
853 |
+
"grad_norm": 2.347985877636318,
|
854 |
+
"learning_rate": 2.8301985044857947e-05,
|
855 |
+
"loss": 0.7199,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.16272633298876255,
|
860 |
+
"grad_norm": 2.2534314586033113,
|
861 |
+
"learning_rate": 2.8272522724749743e-05,
|
862 |
+
"loss": 0.6835,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.16406015539030977,
|
867 |
+
"grad_norm": 3.159583116387406,
|
868 |
+
"learning_rate": 2.8242822605285323e-05,
|
869 |
+
"loss": 0.7122,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.16539397779185702,
|
874 |
+
"grad_norm": 2.086588782887239,
|
875 |
+
"learning_rate": 2.8212885218591812e-05,
|
876 |
+
"loss": 0.6949,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16672780019340425,
|
881 |
+
"grad_norm": 7.284236966547317,
|
882 |
+
"learning_rate": 2.8182711101047362e-05,
|
883 |
+
"loss": 0.6641,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16806162259495147,
|
888 |
+
"grad_norm": 3.0369619450249594,
|
889 |
+
"learning_rate": 2.815230079327156e-05,
|
890 |
+
"loss": 0.6731,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16939544499649872,
|
895 |
+
"grad_norm": 1.4144726574636068,
|
896 |
+
"learning_rate": 2.8121654840115734e-05,
|
897 |
+
"loss": 0.6898,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.17072926739804595,
|
902 |
+
"grad_norm": 3.66202356670303,
|
903 |
+
"learning_rate": 2.809077379065319e-05,
|
904 |
+
"loss": 0.7174,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.17206308979959317,
|
909 |
+
"grad_norm": 4.778073521019285,
|
910 |
+
"learning_rate": 2.805965819816937e-05,
|
911 |
+
"loss": 0.6186,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.17339691220114042,
|
916 |
+
"grad_norm": 3.9620427201734576,
|
917 |
+
"learning_rate": 2.802830862015196e-05,
|
918 |
+
"loss": 0.684,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.17473073460268765,
|
923 |
+
"grad_norm": 4.170199740083487,
|
924 |
+
"learning_rate": 2.799672561828087e-05,
|
925 |
+
"loss": 0.7102,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.17606455700423487,
|
930 |
+
"grad_norm": 2.2612205048804714,
|
931 |
+
"learning_rate": 2.79649097584182e-05,
|
932 |
+
"loss": 0.7451,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17739837940578213,
|
937 |
+
"grad_norm": 1.7156828128822517,
|
938 |
+
"learning_rate": 2.7932861610598077e-05,
|
939 |
+
"loss": 0.6641,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17873220180732935,
|
944 |
+
"grad_norm": 7.960733847217257,
|
945 |
+
"learning_rate": 2.7900581749016466e-05,
|
946 |
+
"loss": 0.7365,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1800660242088766,
|
951 |
+
"grad_norm": 2.5364939682563756,
|
952 |
+
"learning_rate": 2.7868070752020865e-05,
|
953 |
+
"loss": 0.7078,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.18139984661042383,
|
958 |
+
"grad_norm": 2.7446281678776137,
|
959 |
+
"learning_rate": 2.7835329202099944e-05,
|
960 |
+
"loss": 0.7214,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.18273366901197105,
|
965 |
+
"grad_norm": 3.2416602016145886,
|
966 |
+
"learning_rate": 2.7802357685873117e-05,
|
967 |
+
"loss": 0.6757,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1840674914135183,
|
972 |
+
"grad_norm": 5.225459736579946,
|
973 |
+
"learning_rate": 2.7769156794080033e-05,
|
974 |
+
"loss": 0.7381,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.18540131381506553,
|
979 |
+
"grad_norm": 5.176692689501482,
|
980 |
+
"learning_rate": 2.7735727121569967e-05,
|
981 |
+
"loss": 0.7354,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.18673513621661275,
|
986 |
+
"grad_norm": 2.7441883232342574,
|
987 |
+
"learning_rate": 2.770206926729121e-05,
|
988 |
+
"loss": 0.6937,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.18806895861816,
|
993 |
+
"grad_norm": 2.9792116246243525,
|
994 |
+
"learning_rate": 2.7668183834280284e-05,
|
995 |
+
"loss": 0.6641,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.18940278101970723,
|
1000 |
+
"grad_norm": 2.4645298487410723,
|
1001 |
+
"learning_rate": 2.763407142965117e-05,
|
1002 |
+
"loss": 0.6274,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.19073660342125445,
|
1007 |
+
"grad_norm": 7.245032878035033,
|
1008 |
+
"learning_rate": 2.759973266458444e-05,
|
1009 |
+
"loss": 0.6962,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1920704258228017,
|
1014 |
+
"grad_norm": 5.642209662597534,
|
1015 |
+
"learning_rate": 2.756516815431627e-05,
|
1016 |
+
"loss": 0.7016,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.19340424822434893,
|
1021 |
+
"grad_norm": 2.9804981875184526,
|
1022 |
+
"learning_rate": 2.7530378518127445e-05,
|
1023 |
+
"loss": 0.7331,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.19473807062589615,
|
1028 |
+
"grad_norm": 7.496561660992361,
|
1029 |
+
"learning_rate": 2.7495364379332256e-05,
|
1030 |
+
"loss": 0.7234,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.1960718930274434,
|
1035 |
+
"grad_norm": 1.6139389803246291,
|
1036 |
+
"learning_rate": 2.7460126365267335e-05,
|
1037 |
+
"loss": 0.7013,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.19740571542899063,
|
1042 |
+
"grad_norm": 4.618678334755141,
|
1043 |
+
"learning_rate": 2.7424665107280402e-05,
|
1044 |
+
"loss": 0.6892,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19873953783053785,
|
1049 |
+
"grad_norm": 15.494190234738744,
|
1050 |
+
"learning_rate": 2.738898124071898e-05,
|
1051 |
+
"loss": 0.6785,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2000733602320851,
|
1056 |
+
"grad_norm": 3.1680363319798954,
|
1057 |
+
"learning_rate": 2.735307540491898e-05,
|
1058 |
+
"loss": 0.669,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.20140718263363233,
|
1063 |
+
"grad_norm": 2.5397562341036224,
|
1064 |
+
"learning_rate": 2.7316948243193273e-05,
|
1065 |
+
"loss": 0.6726,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.20274100503517956,
|
1070 |
+
"grad_norm": 4.139021422606072,
|
1071 |
+
"learning_rate": 2.7280600402820146e-05,
|
1072 |
+
"loss": 0.6706,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2040748274367268,
|
1077 |
+
"grad_norm": 2.7422468825646065,
|
1078 |
+
"learning_rate": 2.724403253503171e-05,
|
1079 |
+
"loss": 0.7078,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.20540864983827403,
|
1084 |
+
"grad_norm": 2.744225768808104,
|
1085 |
+
"learning_rate": 2.7207245295002242e-05,
|
1086 |
+
"loss": 0.6821,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.20674247223982126,
|
1091 |
+
"grad_norm": 2.234040668790152,
|
1092 |
+
"learning_rate": 2.7170239341836436e-05,
|
1093 |
+
"loss": 0.7451,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.2080762946413685,
|
1098 |
+
"grad_norm": 2.531733996425376,
|
1099 |
+
"learning_rate": 2.7133015338557585e-05,
|
1100 |
+
"loss": 0.7205,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20941011704291573,
|
1105 |
+
"grad_norm": 2.9772483856455616,
|
1106 |
+
"learning_rate": 2.7095573952095727e-05,
|
1107 |
+
"loss": 0.7274,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.21074393944446296,
|
1112 |
+
"grad_norm": 3.317235333047955,
|
1113 |
+
"learning_rate": 2.705791585327568e-05,
|
1114 |
+
"loss": 0.7309,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2120777618460102,
|
1119 |
+
"grad_norm": 1.9652386793628944,
|
1120 |
+
"learning_rate": 2.7020041716805014e-05,
|
1121 |
+
"loss": 0.7157,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.21341158424755743,
|
1126 |
+
"grad_norm": 2.93724058913164,
|
1127 |
+
"learning_rate": 2.6981952221261986e-05,
|
1128 |
+
"loss": 0.7123,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.21474540664910466,
|
1133 |
+
"grad_norm": 6.395577225750395,
|
1134 |
+
"learning_rate": 2.6943648049083366e-05,
|
1135 |
+
"loss": 0.6991,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2160792290506519,
|
1140 |
+
"grad_norm": 2.4292347967714973,
|
1141 |
+
"learning_rate": 2.6905129886552208e-05,
|
1142 |
+
"loss": 0.7004,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.21741305145219914,
|
1147 |
+
"grad_norm": 1.8304810950546353,
|
1148 |
+
"learning_rate": 2.6866398423785568e-05,
|
1149 |
+
"loss": 0.6941,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.2187468738537464,
|
1154 |
+
"grad_norm": 2.762870839632077,
|
1155 |
+
"learning_rate": 2.682745435472212e-05,
|
1156 |
+
"loss": 0.6928,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.2200806962552936,
|
1161 |
+
"grad_norm": 3.4172019229090917,
|
1162 |
+
"learning_rate": 2.6788298377109748e-05,
|
1163 |
+
"loss": 0.7344,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.22141451865684084,
|
1168 |
+
"grad_norm": 2.7483538989548175,
|
1169 |
+
"learning_rate": 2.6748931192493017e-05,
|
1170 |
+
"loss": 0.7367,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.2227483410583881,
|
1175 |
+
"grad_norm": 7.314729269236597,
|
1176 |
+
"learning_rate": 2.670935350620063e-05,
|
1177 |
+
"loss": 0.6849,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.2240821634599353,
|
1182 |
+
"grad_norm": 3.8688065039432527,
|
1183 |
+
"learning_rate": 2.6669566027332767e-05,
|
1184 |
+
"loss": 0.6812,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.22541598586148254,
|
1189 |
+
"grad_norm": 7.10517346658295,
|
1190 |
+
"learning_rate": 2.6629569468748404e-05,
|
1191 |
+
"loss": 0.6089,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2267498082630298,
|
1196 |
+
"grad_norm": 2.4198822683275147,
|
1197 |
+
"learning_rate": 2.658936454705251e-05,
|
1198 |
+
"loss": 0.6666,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.22808363066457701,
|
1203 |
+
"grad_norm": 2.4915285584652054,
|
1204 |
+
"learning_rate": 2.6548951982583246e-05,
|
1205 |
+
"loss": 0.7088,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.22941745306612424,
|
1210 |
+
"grad_norm": 2.2849831540010537,
|
1211 |
+
"learning_rate": 2.650833249939903e-05,
|
1212 |
+
"loss": 0.7149,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.2307512754676715,
|
1217 |
+
"grad_norm": 1.5098088938051029,
|
1218 |
+
"learning_rate": 2.6467506825265573e-05,
|
1219 |
+
"loss": 0.7254,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.23208509786921871,
|
1224 |
+
"grad_norm": 3.4800248296443814,
|
1225 |
+
"learning_rate": 2.642647569164284e-05,
|
1226 |
+
"loss": 0.6916,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.23341892027076594,
|
1231 |
+
"grad_norm": 7.281500947090542,
|
1232 |
+
"learning_rate": 2.638523983367194e-05,
|
1233 |
+
"loss": 0.6831,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2347527426723132,
|
1238 |
+
"grad_norm": 3.0161864395495446,
|
1239 |
+
"learning_rate": 2.634379999016198e-05,
|
1240 |
+
"loss": 0.6999,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.23608656507386042,
|
1245 |
+
"grad_norm": 2.0917745352156762,
|
1246 |
+
"learning_rate": 2.6302156903576784e-05,
|
1247 |
+
"loss": 0.7112,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.23742038747540764,
|
1252 |
+
"grad_norm": 1.918811185774526,
|
1253 |
+
"learning_rate": 2.6260311320021628e-05,
|
1254 |
+
"loss": 0.6725,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.2387542098769549,
|
1259 |
+
"grad_norm": 3.0697413876733695,
|
1260 |
+
"learning_rate": 2.6218263989229855e-05,
|
1261 |
+
"loss": 0.7133,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.24008803227850212,
|
1266 |
+
"grad_norm": 6.14274393655379,
|
1267 |
+
"learning_rate": 2.617601566454944e-05,
|
1268 |
+
"loss": 0.6678,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.24142185468004934,
|
1273 |
+
"grad_norm": 4.259979200715344,
|
1274 |
+
"learning_rate": 2.613356710292951e-05,
|
1275 |
+
"loss": 0.7013,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.2427556770815966,
|
1280 |
+
"grad_norm": 3.1011058557692808,
|
1281 |
+
"learning_rate": 2.6090919064906766e-05,
|
1282 |
+
"loss": 0.7027,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.24408949948314382,
|
1287 |
+
"grad_norm": 3.677900978078831,
|
1288 |
+
"learning_rate": 2.6048072314591854e-05,
|
1289 |
+
"loss": 0.711,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.24542332188469104,
|
1294 |
+
"grad_norm": 2.368576699713982,
|
1295 |
+
"learning_rate": 2.600502761965569e-05,
|
1296 |
+
"loss": 0.6917,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.2467571442862383,
|
1301 |
+
"grad_norm": 3.0346306894457,
|
1302 |
+
"learning_rate": 2.59617857513157e-05,
|
1303 |
+
"loss": 0.69,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.24809096668778552,
|
1308 |
+
"grad_norm": 3.1228131080916204,
|
1309 |
+
"learning_rate": 2.591834748432198e-05,
|
1310 |
+
"loss": 0.695,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.24942478908933274,
|
1315 |
+
"grad_norm": 2.6886660685401034,
|
1316 |
+
"learning_rate": 2.5874713596943465e-05,
|
1317 |
+
"loss": 0.6681,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.25075861149087997,
|
1322 |
+
"grad_norm": 1.7244460999561722,
|
1323 |
+
"learning_rate": 2.5830884870953933e-05,
|
1324 |
+
"loss": 0.6737,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.25209243389242725,
|
1329 |
+
"grad_norm": 2.4283725332509842,
|
1330 |
+
"learning_rate": 2.578686209161803e-05,
|
1331 |
+
"loss": 0.6598,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.2534262562939745,
|
1336 |
+
"grad_norm": 5.496556851547161,
|
1337 |
+
"learning_rate": 2.5742646047677186e-05,
|
1338 |
+
"loss": 0.6931,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2547600786955217,
|
1343 |
+
"grad_norm": 1.2751270156124934,
|
1344 |
+
"learning_rate": 2.5698237531335493e-05,
|
1345 |
+
"loss": 0.7043,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.2560939010970689,
|
1350 |
+
"grad_norm": 8.807017683974516,
|
1351 |
+
"learning_rate": 2.56536373382455e-05,
|
1352 |
+
"loss": 0.6234,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.25742772349861615,
|
1357 |
+
"grad_norm": 3.6331868296726277,
|
1358 |
+
"learning_rate": 2.5608846267493974e-05,
|
1359 |
+
"loss": 0.6763,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.25876154590016337,
|
1364 |
+
"grad_norm": 5.094905230807839,
|
1365 |
+
"learning_rate": 2.5563865121587563e-05,
|
1366 |
+
"loss": 0.6692,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.26009536830171065,
|
1371 |
+
"grad_norm": 2.0520732769663237,
|
1372 |
+
"learning_rate": 2.5518694706438445e-05,
|
1373 |
+
"loss": 0.7008,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2614291907032579,
|
1378 |
+
"grad_norm": 2.1265138955486336,
|
1379 |
+
"learning_rate": 2.5473335831349842e-05,
|
1380 |
+
"loss": 0.6623,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2627630131048051,
|
1385 |
+
"grad_norm": 4.532469697105077,
|
1386 |
+
"learning_rate": 2.5427789309001577e-05,
|
1387 |
+
"loss": 0.7099,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2640968355063523,
|
1392 |
+
"grad_norm": 1.8912900905557881,
|
1393 |
+
"learning_rate": 2.538205595543548e-05,
|
1394 |
+
"loss": 0.712,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.26543065790789955,
|
1399 |
+
"grad_norm": 9.714825687307293,
|
1400 |
+
"learning_rate": 2.5336136590040767e-05,
|
1401 |
+
"loss": 0.6418,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.26676448030944677,
|
1406 |
+
"grad_norm": 4.375615975749738,
|
1407 |
+
"learning_rate": 2.529003203553937e-05,
|
1408 |
+
"loss": 0.6933,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.26809830271099405,
|
1413 |
+
"grad_norm": 5.945657366701919,
|
1414 |
+
"learning_rate": 2.5243743117971186e-05,
|
1415 |
+
"loss": 0.6748,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2694321251125413,
|
1420 |
+
"grad_norm": 7.453951551881255,
|
1421 |
+
"learning_rate": 2.5197270666679295e-05,
|
1422 |
+
"loss": 0.7004,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2707659475140885,
|
1427 |
+
"grad_norm": 2.3916662603858665,
|
1428 |
+
"learning_rate": 2.515061551429509e-05,
|
1429 |
+
"loss": 0.6961,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2720997699156357,
|
1434 |
+
"grad_norm": 3.5972047868369104,
|
1435 |
+
"learning_rate": 2.5103778496723334e-05,
|
1436 |
+
"loss": 0.7058,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.27343359231718295,
|
1441 |
+
"grad_norm": 4.525268184238612,
|
1442 |
+
"learning_rate": 2.5056760453127242e-05,
|
1443 |
+
"loss": 0.6704,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.2747674147187302,
|
1448 |
+
"grad_norm": 5.9581146555788465,
|
1449 |
+
"learning_rate": 2.5009562225913385e-05,
|
1450 |
+
"loss": 0.6722,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.27610123712027745,
|
1455 |
+
"grad_norm": 4.163590223716233,
|
1456 |
+
"learning_rate": 2.4962184660716645e-05,
|
1457 |
+
"loss": 0.6933,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.2774350595218247,
|
1462 |
+
"grad_norm": 2.0180801697563258,
|
1463 |
+
"learning_rate": 2.4914628606385022e-05,
|
1464 |
+
"loss": 0.6982,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.2787688819233719,
|
1469 |
+
"grad_norm": 2.3996169579330373,
|
1470 |
+
"learning_rate": 2.4866894914964462e-05,
|
1471 |
+
"loss": 0.6832,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.2801027043249191,
|
1476 |
+
"grad_norm": 20.07054133895426,
|
1477 |
+
"learning_rate": 2.481898444168357e-05,
|
1478 |
+
"loss": 0.6871,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.28143652672646635,
|
1483 |
+
"grad_norm": 3.563765719247629,
|
1484 |
+
"learning_rate": 2.4770898044938284e-05,
|
1485 |
+
"loss": 0.703,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.28277034912801363,
|
1490 |
+
"grad_norm": 1.9816905810381245,
|
1491 |
+
"learning_rate": 2.4722636586276522e-05,
|
1492 |
+
"loss": 0.7132,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.28410417152956086,
|
1497 |
+
"grad_norm": 4.0053115388283205,
|
1498 |
+
"learning_rate": 2.4674200930382712e-05,
|
1499 |
+
"loss": 0.6991,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.2854379939311081,
|
1504 |
+
"grad_norm": 1.9643538302216321,
|
1505 |
+
"learning_rate": 2.4625591945062326e-05,
|
1506 |
+
"loss": 0.7182,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.2867718163326553,
|
1511 |
+
"grad_norm": 1.7027289253737494,
|
1512 |
+
"learning_rate": 2.4576810501226318e-05,
|
1513 |
+
"loss": 0.6856,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.28810563873420253,
|
1518 |
+
"grad_norm": 3.394597130806682,
|
1519 |
+
"learning_rate": 2.4527857472875515e-05,
|
1520 |
+
"loss": 0.7013,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.28943946113574975,
|
1525 |
+
"grad_norm": 2.766786923916393,
|
1526 |
+
"learning_rate": 2.447873373708498e-05,
|
1527 |
+
"loss": 0.6913,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.29077328353729703,
|
1532 |
+
"grad_norm": 6.781532105937228,
|
1533 |
+
"learning_rate": 2.4429440173988275e-05,
|
1534 |
+
"loss": 0.7401,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.29210710593884426,
|
1539 |
+
"grad_norm": 2.6220209383444946,
|
1540 |
+
"learning_rate": 2.43799776667617e-05,
|
1541 |
+
"loss": 0.7287,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.2934409283403915,
|
1546 |
+
"grad_norm": 4.597566226152422,
|
1547 |
+
"learning_rate": 2.4330347101608492e-05,
|
1548 |
+
"loss": 0.6664,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.2947747507419387,
|
1553 |
+
"grad_norm": 3.15622915128866,
|
1554 |
+
"learning_rate": 2.428054936774289e-05,
|
1555 |
+
"loss": 0.6757,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.29610857314348593,
|
1560 |
+
"grad_norm": 3.5777836932521065,
|
1561 |
+
"learning_rate": 2.423058535737427e-05,
|
1562 |
+
"loss": 0.7396,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.29744239554503316,
|
1567 |
+
"grad_norm": 2.505384749600403,
|
1568 |
+
"learning_rate": 2.418045596569111e-05,
|
1569 |
+
"loss": 0.7156,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.29877621794658044,
|
1574 |
+
"grad_norm": 15.640998645324629,
|
1575 |
+
"learning_rate": 2.4130162090844976e-05,
|
1576 |
+
"loss": 0.7016,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.30011004034812766,
|
1581 |
+
"grad_norm": 6.1147200283733865,
|
1582 |
+
"learning_rate": 2.4079704633934427e-05,
|
1583 |
+
"loss": 0.6835,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.3014438627496749,
|
1588 |
+
"grad_norm": 2.4704828096249907,
|
1589 |
+
"learning_rate": 2.4029084498988864e-05,
|
1590 |
+
"loss": 0.717,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.3027776851512221,
|
1595 |
+
"grad_norm": 3.624817679194012,
|
1596 |
+
"learning_rate": 2.3978302592952332e-05,
|
1597 |
+
"loss": 0.6863,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.30411150755276933,
|
1602 |
+
"grad_norm": 7.1778372122735155,
|
1603 |
+
"learning_rate": 2.392735982566728e-05,
|
1604 |
+
"loss": 0.7057,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.30544532995431656,
|
1609 |
+
"grad_norm": 1.541203747230883,
|
1610 |
+
"learning_rate": 2.387625710985826e-05,
|
1611 |
+
"loss": 0.6755,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.30677915235586384,
|
1616 |
+
"grad_norm": 5.290753363343769,
|
1617 |
+
"learning_rate": 2.3824995361115552e-05,
|
1618 |
+
"loss": 0.7214,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.30811297475741106,
|
1623 |
+
"grad_norm": 11.18524078914846,
|
1624 |
+
"learning_rate": 2.3773575497878784e-05,
|
1625 |
+
"loss": 0.687,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.3094467971589583,
|
1630 |
+
"grad_norm": 2.8473409260968854,
|
1631 |
+
"learning_rate": 2.372199844142048e-05,
|
1632 |
+
"loss": 0.6588,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.3107806195605055,
|
1637 |
+
"grad_norm": 3.6509202763742894,
|
1638 |
+
"learning_rate": 2.3670265115829523e-05,
|
1639 |
+
"loss": 0.7146,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.31211444196205274,
|
1644 |
+
"grad_norm": 2.86323212169014,
|
1645 |
+
"learning_rate": 2.3618376447994633e-05,
|
1646 |
+
"loss": 0.6965,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.31344826436359996,
|
1651 |
+
"grad_norm": 1.6724444694024563,
|
1652 |
+
"learning_rate": 2.3566333367587737e-05,
|
1653 |
+
"loss": 0.6827,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.31478208676514724,
|
1658 |
+
"grad_norm": 3.7438462947121876,
|
1659 |
+
"learning_rate": 2.3514136807047318e-05,
|
1660 |
+
"loss": 0.677,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.31611590916669446,
|
1665 |
+
"grad_norm": 3.150319939971515,
|
1666 |
+
"learning_rate": 2.3461787701561724e-05,
|
1667 |
+
"loss": 0.6926,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.3174497315682417,
|
1672 |
+
"grad_norm": 1.9724696911512674,
|
1673 |
+
"learning_rate": 2.340928698905239e-05,
|
1674 |
+
"loss": 0.7269,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.3187835539697889,
|
1679 |
+
"grad_norm": 2.6615995505256604,
|
1680 |
+
"learning_rate": 2.335663561015704e-05,
|
1681 |
+
"loss": 0.719,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.32011737637133614,
|
1686 |
+
"grad_norm": 3.648818329043563,
|
1687 |
+
"learning_rate": 2.3303834508212845e-05,
|
1688 |
+
"loss": 0.6593,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.3214511987728834,
|
1693 |
+
"grad_norm": 5.032935766388129,
|
1694 |
+
"learning_rate": 2.325088462923951e-05,
|
1695 |
+
"loss": 0.7018,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.32278502117443064,
|
1700 |
+
"grad_norm": 5.116190153583237,
|
1701 |
+
"learning_rate": 2.319778692192233e-05,
|
1702 |
+
"loss": 0.6138,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.32411884357597787,
|
1707 |
+
"grad_norm": 8.77553429349065,
|
1708 |
+
"learning_rate": 2.3144542337595196e-05,
|
1709 |
+
"loss": 0.6995,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.3254526659775251,
|
1714 |
+
"grad_norm": 4.020402137418298,
|
1715 |
+
"learning_rate": 2.3091151830223537e-05,
|
1716 |
+
"loss": 0.6935,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.3267864883790723,
|
1721 |
+
"grad_norm": 2.326990350307363,
|
1722 |
+
"learning_rate": 2.3037616356387237e-05,
|
1723 |
+
"loss": 0.6657,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.32812031078061954,
|
1728 |
+
"grad_norm": 1.9450305290081706,
|
1729 |
+
"learning_rate": 2.2983936875263495e-05,
|
1730 |
+
"loss": 0.6884,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.3294541331821668,
|
1735 |
+
"grad_norm": 2.4083218262957407,
|
1736 |
+
"learning_rate": 2.2930114348609655e-05,
|
1737 |
+
"loss": 0.6324,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.33078795558371404,
|
1742 |
+
"grad_norm": 4.469293094525185,
|
1743 |
+
"learning_rate": 2.2876149740745935e-05,
|
1744 |
+
"loss": 0.7054,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.33212177798526127,
|
1749 |
+
"grad_norm": 3.0408327884382613,
|
1750 |
+
"learning_rate": 2.28220440185382e-05,
|
1751 |
+
"loss": 0.6996,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.3334556003868085,
|
1756 |
+
"grad_norm": 2.5340984000691273,
|
1757 |
+
"learning_rate": 2.2767798151380597e-05,
|
1758 |
+
"loss": 0.6908,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.3347894227883557,
|
1763 |
+
"grad_norm": 2.4867165525033,
|
1764 |
+
"learning_rate": 2.27134131111782e-05,
|
1765 |
+
"loss": 0.6838,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.33612324518990294,
|
1770 |
+
"grad_norm": 14.755496795057269,
|
1771 |
+
"learning_rate": 2.2658889872329628e-05,
|
1772 |
+
"loss": 0.7072,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.3374570675914502,
|
1777 |
+
"grad_norm": 11.498768616138861,
|
1778 |
+
"learning_rate": 2.2604229411709518e-05,
|
1779 |
+
"loss": 0.6837,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.33879088999299745,
|
1784 |
+
"grad_norm": 1.6627733851927542,
|
1785 |
+
"learning_rate": 2.25494327086511e-05,
|
1786 |
+
"loss": 0.6948,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.34012471239454467,
|
1791 |
+
"grad_norm": 4.465322393758394,
|
1792 |
+
"learning_rate": 2.2494500744928583e-05,
|
1793 |
+
"loss": 0.706,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.3414585347960919,
|
1798 |
+
"grad_norm": 2.5329140738676714,
|
1799 |
+
"learning_rate": 2.243943450473963e-05,
|
1800 |
+
"loss": 0.6652,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.3427923571976391,
|
1805 |
+
"grad_norm": 2.6213955428320963,
|
1806 |
+
"learning_rate": 2.2384234974687658e-05,
|
1807 |
+
"loss": 0.7123,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.34412617959918634,
|
1812 |
+
"grad_norm": 2.8450668136715827,
|
1813 |
+
"learning_rate": 2.2328903143764216e-05,
|
1814 |
+
"loss": 0.6748,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.3454600020007336,
|
1819 |
+
"grad_norm": 9.246863580911334,
|
1820 |
+
"learning_rate": 2.2273440003331237e-05,
|
1821 |
+
"loss": 0.6774,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.34679382440228085,
|
1826 |
+
"grad_norm": 2.610989556515575,
|
1827 |
+
"learning_rate": 2.2217846547103275e-05,
|
1828 |
+
"loss": 0.7042,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.3481276468038281,
|
1833 |
+
"grad_norm": 7.325969061692186,
|
1834 |
+
"learning_rate": 2.216212377112972e-05,
|
1835 |
+
"loss": 0.6834,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.3494614692053753,
|
1840 |
+
"grad_norm": 3.001379331751721,
|
1841 |
+
"learning_rate": 2.2106272673776934e-05,
|
1842 |
+
"loss": 0.7033,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.3507952916069225,
|
1847 |
+
"grad_norm": 3.463073346975308,
|
1848 |
+
"learning_rate": 2.2050294255710375e-05,
|
1849 |
+
"loss": 0.6839,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.35212911400846975,
|
1854 |
+
"grad_norm": 3.524564101951424,
|
1855 |
+
"learning_rate": 2.1994189519876663e-05,
|
1856 |
+
"loss": 0.6948,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.353462936410017,
|
1861 |
+
"grad_norm": 3.152341329769827,
|
1862 |
+
"learning_rate": 2.19379594714856e-05,
|
1863 |
+
"loss": 0.6767,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.35479675881156425,
|
1868 |
+
"grad_norm": 4.2343916663936305,
|
1869 |
+
"learning_rate": 2.188160511799219e-05,
|
1870 |
+
"loss": 0.6755,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.3561305812131115,
|
1875 |
+
"grad_norm": 2.7909676165285813,
|
1876 |
+
"learning_rate": 2.1825127469078555e-05,
|
1877 |
+
"loss": 0.6694,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.3574644036146587,
|
1882 |
+
"grad_norm": 1.8765416483232782,
|
1883 |
+
"learning_rate": 2.1768527536635868e-05,
|
1884 |
+
"loss": 0.7031,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.3587982260162059,
|
1889 |
+
"grad_norm": 13.262978009985517,
|
1890 |
+
"learning_rate": 2.171180633474621e-05,
|
1891 |
+
"loss": 0.7371,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.3601320484177532,
|
1896 |
+
"grad_norm": 3.886717400478723,
|
1897 |
+
"learning_rate": 2.1654964879664407e-05,
|
1898 |
+
"loss": 0.7109,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.3614658708193004,
|
1903 |
+
"grad_norm": 2.040560351248799,
|
1904 |
+
"learning_rate": 2.1598004189799826e-05,
|
1905 |
+
"loss": 0.7274,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.36279969322084765,
|
1910 |
+
"grad_norm": 24.610089275348535,
|
1911 |
+
"learning_rate": 2.1540925285698122e-05,
|
1912 |
+
"loss": 0.6886,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.3641335156223949,
|
1917 |
+
"grad_norm": 3.6439264742220216,
|
1918 |
+
"learning_rate": 2.148372919002295e-05,
|
1919 |
+
"loss": 0.681,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.3654673380239421,
|
1924 |
+
"grad_norm": 5.83580774778366,
|
1925 |
+
"learning_rate": 2.142641692753765e-05,
|
1926 |
+
"loss": 0.6502,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.3668011604254893,
|
1931 |
+
"grad_norm": 1.8530940550203352,
|
1932 |
+
"learning_rate": 2.1368989525086893e-05,
|
1933 |
+
"loss": 0.6854,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.3681349828270366,
|
1938 |
+
"grad_norm": 5.003536499561226,
|
1939 |
+
"learning_rate": 2.1311448011578255e-05,
|
1940 |
+
"loss": 0.6699,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.36946880522858383,
|
1945 |
+
"grad_norm": 2.6889933495770912,
|
1946 |
+
"learning_rate": 2.125379341796382e-05,
|
1947 |
+
"loss": 0.741,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.37080262763013105,
|
1952 |
+
"grad_norm": 2.0672372686575575,
|
1953 |
+
"learning_rate": 2.1196026777221684e-05,
|
1954 |
+
"loss": 0.693,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.3721364500316783,
|
1959 |
+
"grad_norm": 3.023122371840424,
|
1960 |
+
"learning_rate": 2.1138149124337448e-05,
|
1961 |
+
"loss": 0.7227,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.3734702724332255,
|
1966 |
+
"grad_norm": 5.98908480573641,
|
1967 |
+
"learning_rate": 2.108016149628569e-05,
|
1968 |
+
"loss": 0.6875,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.3748040948347727,
|
1973 |
+
"grad_norm": 13.324804502845906,
|
1974 |
+
"learning_rate": 2.102206493201137e-05,
|
1975 |
+
"loss": 0.6693,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.37613791723632,
|
1980 |
+
"grad_norm": 2.877158805709884,
|
1981 |
+
"learning_rate": 2.096386047241123e-05,
|
1982 |
+
"loss": 0.6752,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.37747173963786723,
|
1987 |
+
"grad_norm": 3.417018003930411,
|
1988 |
+
"learning_rate": 2.0905549160315116e-05,
|
1989 |
+
"loss": 0.6874,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.37880556203941446,
|
1994 |
+
"grad_norm": 6.197947611584602,
|
1995 |
+
"learning_rate": 2.084713204046734e-05,
|
1996 |
+
"loss": 0.6995,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.3801393844409617,
|
2001 |
+
"grad_norm": 2.4400537269180327,
|
2002 |
+
"learning_rate": 2.078861015950793e-05,
|
2003 |
+
"loss": 0.718,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.3814732068425089,
|
2008 |
+
"grad_norm": 3.4313321352162878,
|
2009 |
+
"learning_rate": 2.072998456595387e-05,
|
2010 |
+
"loss": 0.6928,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.38280702924405613,
|
2015 |
+
"grad_norm": 3.323108743280233,
|
2016 |
+
"learning_rate": 2.0671256310180334e-05,
|
2017 |
+
"loss": 0.7141,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.3841408516456034,
|
2022 |
+
"grad_norm": 2.270407423855968,
|
2023 |
+
"learning_rate": 2.0612426444401874e-05,
|
2024 |
+
"loss": 0.6677,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.38547467404715063,
|
2029 |
+
"grad_norm": 4.473087793045971,
|
2030 |
+
"learning_rate": 2.0553496022653535e-05,
|
2031 |
+
"loss": 0.706,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.38680849644869786,
|
2036 |
+
"grad_norm": 4.498504602131192,
|
2037 |
+
"learning_rate": 2.0494466100772006e-05,
|
2038 |
+
"loss": 0.6783,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.3881423188502451,
|
2043 |
+
"grad_norm": 1.8721168603816298,
|
2044 |
+
"learning_rate": 2.0435337736376677e-05,
|
2045 |
+
"loss": 0.7327,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.3894761412517923,
|
2050 |
+
"grad_norm": 2.1819398242824093,
|
2051 |
+
"learning_rate": 2.03761119888507e-05,
|
2052 |
+
"loss": 0.6798,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.39080996365333953,
|
2057 |
+
"grad_norm": 29.747303047069977,
|
2058 |
+
"learning_rate": 2.031678991932201e-05,
|
2059 |
+
"loss": 0.7045,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.3921437860548868,
|
2064 |
+
"grad_norm": 4.708328967247123,
|
2065 |
+
"learning_rate": 2.0257372590644314e-05,
|
2066 |
+
"loss": 0.6896,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.39347760845643404,
|
2071 |
+
"grad_norm": 2.873510721340991,
|
2072 |
+
"learning_rate": 2.0197861067378044e-05,
|
2073 |
+
"loss": 0.6802,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.39481143085798126,
|
2078 |
+
"grad_norm": 4.540574995423212,
|
2079 |
+
"learning_rate": 2.0138256415771275e-05,
|
2080 |
+
"loss": 0.6219,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3961452532595285,
|
2085 |
+
"grad_norm": 11.817372765224325,
|
2086 |
+
"learning_rate": 2.0078559703740654e-05,
|
2087 |
+
"loss": 0.65,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3974790756610757,
|
2092 |
+
"grad_norm": 11.004144754692504,
|
2093 |
+
"learning_rate": 2.0018772000852216e-05,
|
2094 |
+
"loss": 0.7056,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.398812898062623,
|
2099 |
+
"grad_norm": 1.7365475356133573,
|
2100 |
+
"learning_rate": 1.9958894378302265e-05,
|
2101 |
+
"loss": 0.6827,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.4001467204641702,
|
2106 |
+
"grad_norm": 4.31426545646336,
|
2107 |
+
"learning_rate": 1.989892790889817e-05,
|
2108 |
+
"loss": 0.6796,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.40148054286571744,
|
2113 |
+
"grad_norm": 2.534413468413497,
|
2114 |
+
"learning_rate": 1.9838873667039134e-05,
|
2115 |
+
"loss": 0.6825,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.40281436526726466,
|
2120 |
+
"grad_norm": 2.5821079814088,
|
2121 |
+
"learning_rate": 1.9778732728696937e-05,
|
2122 |
+
"loss": 0.6522,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.4041481876688119,
|
2127 |
+
"grad_norm": 10.45675108188373,
|
2128 |
+
"learning_rate": 1.9718506171396694e-05,
|
2129 |
+
"loss": 0.6752,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.4054820100703591,
|
2134 |
+
"grad_norm": 10.969680268488736,
|
2135 |
+
"learning_rate": 1.965819507419751e-05,
|
2136 |
+
"loss": 0.7195,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.4068158324719064,
|
2141 |
+
"grad_norm": 9.540053007670354,
|
2142 |
+
"learning_rate": 1.9597800517673165e-05,
|
2143 |
+
"loss": 0.6762,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.4081496548734536,
|
2148 |
+
"grad_norm": 8.551702443669248,
|
2149 |
+
"learning_rate": 1.9537323583892753e-05,
|
2150 |
+
"loss": 0.7292,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.40948347727500084,
|
2155 |
+
"grad_norm": 3.0994689178852903,
|
2156 |
+
"learning_rate": 1.9476765356401304e-05,
|
2157 |
+
"loss": 0.6764,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.41081729967654806,
|
2162 |
+
"grad_norm": 3.1013298812228163,
|
2163 |
+
"learning_rate": 1.9416126920200344e-05,
|
2164 |
+
"loss": 0.6484,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.4121511220780953,
|
2169 |
+
"grad_norm": 2.00628497131861,
|
2170 |
+
"learning_rate": 1.9355409361728482e-05,
|
2171 |
+
"loss": 0.7094,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.4134849444796425,
|
2176 |
+
"grad_norm": 5.224082004633703,
|
2177 |
+
"learning_rate": 1.9294613768841932e-05,
|
2178 |
+
"loss": 0.7279,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.4148187668811898,
|
2183 |
+
"grad_norm": 18.62631978728915,
|
2184 |
+
"learning_rate": 1.9233741230795022e-05,
|
2185 |
+
"loss": 0.662,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.416152589282737,
|
2190 |
+
"grad_norm": 3.6495526914982968,
|
2191 |
+
"learning_rate": 1.9172792838220686e-05,
|
2192 |
+
"loss": 0.6836,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.41748641168428424,
|
2197 |
+
"grad_norm": 2.304337917905853,
|
2198 |
+
"learning_rate": 1.9111769683110914e-05,
|
2199 |
+
"loss": 0.6901,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.41882023408583147,
|
2204 |
+
"grad_norm": 8.427846401703292,
|
2205 |
+
"learning_rate": 1.905067285879719e-05,
|
2206 |
+
"loss": 0.6606,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.4201540564873787,
|
2211 |
+
"grad_norm": 2.2306668115119104,
|
2212 |
+
"learning_rate": 1.8989503459930908e-05,
|
2213 |
+
"loss": 0.7434,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.4214878788889259,
|
2218 |
+
"grad_norm": 2.231586663842237,
|
2219 |
+
"learning_rate": 1.892826258246376e-05,
|
2220 |
+
"loss": 0.7184,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.4228217012904732,
|
2225 |
+
"grad_norm": 5.804571835994344,
|
2226 |
+
"learning_rate": 1.886695132362808e-05,
|
2227 |
+
"loss": 0.7073,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.4241555236920204,
|
2232 |
+
"grad_norm": 4.7472512172058785,
|
2233 |
+
"learning_rate": 1.8805570781917228e-05,
|
2234 |
+
"loss": 0.7102,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.42548934609356764,
|
2239 |
+
"grad_norm": 1.723627694530291,
|
2240 |
+
"learning_rate": 1.8744122057065856e-05,
|
2241 |
+
"loss": 0.6828,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.42682316849511487,
|
2246 |
+
"grad_norm": 1.9952068710149184,
|
2247 |
+
"learning_rate": 1.868260625003024e-05,
|
2248 |
+
"loss": 0.6545,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.4281569908966621,
|
2253 |
+
"grad_norm": 4.588444559005735,
|
2254 |
+
"learning_rate": 1.8621024462968553e-05,
|
2255 |
+
"loss": 0.67,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.4294908132982093,
|
2260 |
+
"grad_norm": 2.155634253115107,
|
2261 |
+
"learning_rate": 1.85593777992211e-05,
|
2262 |
+
"loss": 0.7173,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.4308246356997566,
|
2267 |
+
"grad_norm": 3.3412948579128194,
|
2268 |
+
"learning_rate": 1.849766736329056e-05,
|
2269 |
+
"loss": 0.6364,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.4321584581013038,
|
2274 |
+
"grad_norm": 2.1344417176214607,
|
2275 |
+
"learning_rate": 1.8435894260822208e-05,
|
2276 |
+
"loss": 0.6919,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.43349228050285105,
|
2281 |
+
"grad_norm": 3.8410669902748764,
|
2282 |
+
"learning_rate": 1.8374059598584084e-05,
|
2283 |
+
"loss": 0.6524,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.43482610290439827,
|
2288 |
+
"grad_norm": 2.609728029777106,
|
2289 |
+
"learning_rate": 1.831216448444717e-05,
|
2290 |
+
"loss": 0.688,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.4361599253059455,
|
2295 |
+
"grad_norm": 2.182084710285402,
|
2296 |
+
"learning_rate": 1.8250210027365562e-05,
|
2297 |
+
"loss": 0.7327,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.4374937477074928,
|
2302 |
+
"grad_norm": 1.0672619638672702,
|
2303 |
+
"learning_rate": 1.818819733735657e-05,
|
2304 |
+
"loss": 0.7137,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.43882757010904,
|
2309 |
+
"grad_norm": 1.7248236414002174,
|
2310 |
+
"learning_rate": 1.812612752548084e-05,
|
2311 |
+
"loss": 0.6848,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.4401613925105872,
|
2316 |
+
"grad_norm": 2.717100059326369,
|
2317 |
+
"learning_rate": 1.806400170382246e-05,
|
2318 |
+
"loss": 0.6582,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.44149521491213445,
|
2323 |
+
"grad_norm": 2.7420980324781348,
|
2324 |
+
"learning_rate": 1.8001820985469026e-05,
|
2325 |
+
"loss": 0.6976,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.4428290373136817,
|
2330 |
+
"grad_norm": 3.9917362204420357,
|
2331 |
+
"learning_rate": 1.7939586484491704e-05,
|
2332 |
+
"loss": 0.7259,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.4441628597152289,
|
2337 |
+
"grad_norm": 3.2371945093430514,
|
2338 |
+
"learning_rate": 1.787729931592525e-05,
|
2339 |
+
"loss": 0.6883,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.4454966821167762,
|
2344 |
+
"grad_norm": 2.439245137250377,
|
2345 |
+
"learning_rate": 1.781496059574807e-05,
|
2346 |
+
"loss": 0.6876,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.4468305045183234,
|
2351 |
+
"grad_norm": 4.525984025887397,
|
2352 |
+
"learning_rate": 1.7752571440862178e-05,
|
2353 |
+
"loss": 0.6724,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.4481643269198706,
|
2358 |
+
"grad_norm": 2.3388903272276518,
|
2359 |
+
"learning_rate": 1.7690132969073223e-05,
|
2360 |
+
"loss": 0.7065,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.44949814932141785,
|
2365 |
+
"grad_norm": 6.946538587379132,
|
2366 |
+
"learning_rate": 1.7627646299070457e-05,
|
2367 |
+
"loss": 0.6444,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.4508319717229651,
|
2372 |
+
"grad_norm": 1.5334789635428385,
|
2373 |
+
"learning_rate": 1.7565112550406663e-05,
|
2374 |
+
"loss": 0.6597,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.4521657941245123,
|
2379 |
+
"grad_norm": 1.7438745925855814,
|
2380 |
+
"learning_rate": 1.7502532843478134e-05,
|
2381 |
+
"loss": 0.736,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.4534996165260596,
|
2386 |
+
"grad_norm": 2.352884928297456,
|
2387 |
+
"learning_rate": 1.743990829950458e-05,
|
2388 |
+
"loss": 0.7209,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.4548334389276068,
|
2393 |
+
"grad_norm": 2.589791551987411,
|
2394 |
+
"learning_rate": 1.737724004050903e-05,
|
2395 |
+
"loss": 0.6873,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.45616726132915403,
|
2400 |
+
"grad_norm": 1.5018800238986845,
|
2401 |
+
"learning_rate": 1.731452918929774e-05,
|
2402 |
+
"loss": 0.6993,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.45750108373070125,
|
2407 |
+
"grad_norm": 1.618737845945941,
|
2408 |
+
"learning_rate": 1.7251776869440097e-05,
|
2409 |
+
"loss": 0.719,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.4588349061322485,
|
2414 |
+
"grad_norm": 4.764891120811521,
|
2415 |
+
"learning_rate": 1.718898420524845e-05,
|
2416 |
+
"loss": 0.7066,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.4601687285337957,
|
2421 |
+
"grad_norm": 30.008073864717016,
|
2422 |
+
"learning_rate": 1.7126152321757985e-05,
|
2423 |
+
"loss": 0.7234,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.461502550935343,
|
2428 |
+
"grad_norm": 4.718402571866902,
|
2429 |
+
"learning_rate": 1.7063282344706577e-05,
|
2430 |
+
"loss": 0.671,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.4628363733368902,
|
2435 |
+
"grad_norm": 3.279168331496427,
|
2436 |
+
"learning_rate": 1.7000375400514602e-05,
|
2437 |
+
"loss": 0.6748,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.46417019573843743,
|
2442 |
+
"grad_norm": 4.202866783860852,
|
2443 |
+
"learning_rate": 1.693743261626476e-05,
|
2444 |
+
"loss": 0.7135,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.46550401813998465,
|
2449 |
+
"grad_norm": 2.959211747400748,
|
2450 |
+
"learning_rate": 1.68744551196819e-05,
|
2451 |
+
"loss": 0.6684,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.4668378405415319,
|
2456 |
+
"grad_norm": 3.7208053935256085,
|
2457 |
+
"learning_rate": 1.6811444039112787e-05,
|
2458 |
+
"loss": 0.6842,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.4681716629430791,
|
2463 |
+
"grad_norm": 1.8411337183473255,
|
2464 |
+
"learning_rate": 1.6748400503505905e-05,
|
2465 |
+
"loss": 0.6796,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.4695054853446264,
|
2470 |
+
"grad_norm": 1.5569024338481647,
|
2471 |
+
"learning_rate": 1.6685325642391223e-05,
|
2472 |
+
"loss": 0.7357,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.4708393077461736,
|
2477 |
+
"grad_norm": 2.30459532472586,
|
2478 |
+
"learning_rate": 1.662222058585996e-05,
|
2479 |
+
"loss": 0.6825,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.47217313014772083,
|
2484 |
+
"grad_norm": 1.6593076444414934,
|
2485 |
+
"learning_rate": 1.6559086464544334e-05,
|
2486 |
+
"loss": 0.7067,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.47350695254926806,
|
2491 |
+
"grad_norm": 2.6738168898709356,
|
2492 |
+
"learning_rate": 1.6495924409597305e-05,
|
2493 |
+
"loss": 0.665,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.4748407749508153,
|
2498 |
+
"grad_norm": 10.974918207024547,
|
2499 |
+
"learning_rate": 1.6432735552672317e-05,
|
2500 |
+
"loss": 0.705,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.4761745973523625,
|
2505 |
+
"grad_norm": 4.279092732465272,
|
2506 |
+
"learning_rate": 1.636952102590301e-05,
|
2507 |
+
"loss": 0.6858,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.4775084197539098,
|
2512 |
+
"grad_norm": 8.958608602390235,
|
2513 |
+
"learning_rate": 1.630628196188295e-05,
|
2514 |
+
"loss": 0.7022,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.478842242155457,
|
2519 |
+
"grad_norm": 1.2316277268276075,
|
2520 |
+
"learning_rate": 1.6243019493645315e-05,
|
2521 |
+
"loss": 0.7091,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.48017606455700423,
|
2526 |
+
"grad_norm": 1.6977852924595596,
|
2527 |
+
"learning_rate": 1.617973475464262e-05,
|
2528 |
+
"loss": 0.6725,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.48150988695855146,
|
2533 |
+
"grad_norm": 9.102696583046576,
|
2534 |
+
"learning_rate": 1.6116428878726396e-05,
|
2535 |
+
"loss": 0.706,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.4828437093600987,
|
2540 |
+
"grad_norm": 2.983654314671525,
|
2541 |
+
"learning_rate": 1.6053103000126874e-05,
|
2542 |
+
"loss": 0.6663,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.48417753176164596,
|
2547 |
+
"grad_norm": 2.9273555172026304,
|
2548 |
+
"learning_rate": 1.598975825343267e-05,
|
2549 |
+
"loss": 0.6986,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.4855113541631932,
|
2554 |
+
"grad_norm": 2.4687475856334613,
|
2555 |
+
"learning_rate": 1.5926395773570447e-05,
|
2556 |
+
"loss": 0.7192,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.4868451765647404,
|
2561 |
+
"grad_norm": 4.171039626246759,
|
2562 |
+
"learning_rate": 1.5863016695784604e-05,
|
2563 |
+
"loss": 0.6702,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.48817899896628764,
|
2568 |
+
"grad_norm": 3.8655482044779337,
|
2569 |
+
"learning_rate": 1.5799622155616887e-05,
|
2570 |
+
"loss": 0.6568,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.48951282136783486,
|
2575 |
+
"grad_norm": 2.8245022157946362,
|
2576 |
+
"learning_rate": 1.5736213288886112e-05,
|
2577 |
+
"loss": 0.7075,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.4908466437693821,
|
2582 |
+
"grad_norm": 2.1969432272158556,
|
2583 |
+
"learning_rate": 1.567279123166776e-05,
|
2584 |
+
"loss": 0.7043,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.49218046617092936,
|
2589 |
+
"grad_norm": 3.7154807458182835,
|
2590 |
+
"learning_rate": 1.560935712027364e-05,
|
2591 |
+
"loss": 0.6467,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.4935142885724766,
|
2596 |
+
"grad_norm": 4.060155573527941,
|
2597 |
+
"learning_rate": 1.5545912091231543e-05,
|
2598 |
+
"loss": 0.6957,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.4948481109740238,
|
2603 |
+
"grad_norm": 2.057087008440973,
|
2604 |
+
"learning_rate": 1.548245728126486e-05,
|
2605 |
+
"loss": 0.6656,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.49618193337557104,
|
2610 |
+
"grad_norm": 1.975534767472513,
|
2611 |
+
"learning_rate": 1.5418993827272224e-05,
|
2612 |
+
"loss": 0.6867,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.49751575577711826,
|
2617 |
+
"grad_norm": 11.237169875747464,
|
2618 |
+
"learning_rate": 1.5355522866307144e-05,
|
2619 |
+
"loss": 0.693,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.4988495781786655,
|
2624 |
+
"grad_norm": 2.7505125088389066,
|
2625 |
+
"learning_rate": 1.529204553555762e-05,
|
2626 |
+
"loss": 0.6715,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.5001834005802127,
|
2631 |
+
"grad_norm": 14.47964311360144,
|
2632 |
+
"learning_rate": 1.522856297232579e-05,
|
2633 |
+
"loss": 0.6638,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.5015172229817599,
|
2638 |
+
"grad_norm": 1.4576903787797197,
|
2639 |
+
"learning_rate": 1.5165076314007529e-05,
|
2640 |
+
"loss": 0.6461,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.5028510453833072,
|
2645 |
+
"grad_norm": 4.190097060433623,
|
2646 |
+
"learning_rate": 1.5101586698072095e-05,
|
2647 |
+
"loss": 0.6997,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.5041848677848545,
|
2652 |
+
"grad_norm": 2.6358802196743887,
|
2653 |
+
"learning_rate": 1.5038095262041725e-05,
|
2654 |
+
"loss": 0.6805,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.5055186901864017,
|
2659 |
+
"grad_norm": 2.9885793100944484,
|
2660 |
+
"learning_rate": 1.4974603143471268e-05,
|
2661 |
+
"loss": 0.663,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.506852512587949,
|
2666 |
+
"grad_norm": 3.364287860442736,
|
2667 |
+
"learning_rate": 1.4911111479927804e-05,
|
2668 |
+
"loss": 0.6851,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.5081863349894962,
|
2673 |
+
"grad_norm": 6.415730527817265,
|
2674 |
+
"learning_rate": 1.4847621408970266e-05,
|
2675 |
+
"loss": 0.6544,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.5095201573910434,
|
2680 |
+
"grad_norm": 1.6327349630681778,
|
2681 |
+
"learning_rate": 1.4784134068129043e-05,
|
2682 |
+
"loss": 0.6629,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.5108539797925906,
|
2687 |
+
"grad_norm": 3.0622996050606783,
|
2688 |
+
"learning_rate": 1.4720650594885614e-05,
|
2689 |
+
"loss": 0.6651,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.5121878021941378,
|
2694 |
+
"grad_norm": 5.445942430441996,
|
2695 |
+
"learning_rate": 1.4657172126652167e-05,
|
2696 |
+
"loss": 0.664,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.5135216245956851,
|
2701 |
+
"grad_norm": 4.518334654823446,
|
2702 |
+
"learning_rate": 1.459369980075121e-05,
|
2703 |
+
"loss": 0.6959,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.5148554469972323,
|
2708 |
+
"grad_norm": 1.8471627413065406,
|
2709 |
+
"learning_rate": 1.4530234754395207e-05,
|
2710 |
+
"loss": 0.6774,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.5161892693987795,
|
2715 |
+
"grad_norm": 3.6484122755334525,
|
2716 |
+
"learning_rate": 1.4466778124666192e-05,
|
2717 |
+
"loss": 0.6825,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.5175230918003267,
|
2722 |
+
"grad_norm": 2.087118207544068,
|
2723 |
+
"learning_rate": 1.4403331048495404e-05,
|
2724 |
+
"loss": 0.6985,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.5188569142018741,
|
2729 |
+
"grad_norm": 11.878313425481934,
|
2730 |
+
"learning_rate": 1.4339894662642914e-05,
|
2731 |
+
"loss": 0.6764,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.5201907366034213,
|
2736 |
+
"grad_norm": 2.5453717997032115,
|
2737 |
+
"learning_rate": 1.4276470103677257e-05,
|
2738 |
+
"loss": 0.7091,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.5215245590049685,
|
2743 |
+
"grad_norm": 4.791248513372535,
|
2744 |
+
"learning_rate": 1.4213058507955072e-05,
|
2745 |
+
"loss": 0.644,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.5228583814065157,
|
2750 |
+
"grad_norm": 2.1955258954683545,
|
2751 |
+
"learning_rate": 1.4149661011600734e-05,
|
2752 |
+
"loss": 0.6954,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.524192203808063,
|
2757 |
+
"grad_norm": 3.5143987933185676,
|
2758 |
+
"learning_rate": 1.4086278750486017e-05,
|
2759 |
+
"loss": 0.6848,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.5255260262096102,
|
2764 |
+
"grad_norm": 3.168504700204386,
|
2765 |
+
"learning_rate": 1.4022912860209709e-05,
|
2766 |
+
"loss": 0.6752,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.5268598486111574,
|
2771 |
+
"grad_norm": 1.9655682723891459,
|
2772 |
+
"learning_rate": 1.3959564476077308e-05,
|
2773 |
+
"loss": 0.6904,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.5281936710127046,
|
2778 |
+
"grad_norm": 1.6897897373972772,
|
2779 |
+
"learning_rate": 1.389623473308065e-05,
|
2780 |
+
"loss": 0.6929,
|
2781 |
+
"step": 3960
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.5295274934142519,
|
2785 |
+
"grad_norm": 4.400154605229998,
|
2786 |
+
"learning_rate": 1.3832924765877587e-05,
|
2787 |
+
"loss": 0.726,
|
2788 |
+
"step": 3970
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.5308613158157991,
|
2792 |
+
"grad_norm": 2.790842978581456,
|
2793 |
+
"learning_rate": 1.3769635708771654e-05,
|
2794 |
+
"loss": 0.6724,
|
2795 |
+
"step": 3980
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.5321951382173463,
|
2799 |
+
"grad_norm": 1.5712798066752716,
|
2800 |
+
"learning_rate": 1.3706368695691745e-05,
|
2801 |
+
"loss": 0.6703,
|
2802 |
+
"step": 3990
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.5335289606188935,
|
2806 |
+
"grad_norm": 5.340886291219129,
|
2807 |
+
"learning_rate": 1.3643124860171801e-05,
|
2808 |
+
"loss": 0.6595,
|
2809 |
+
"step": 4000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.5348627830204409,
|
2813 |
+
"grad_norm": 1.985940330857511,
|
2814 |
+
"learning_rate": 1.35799053353305e-05,
|
2815 |
+
"loss": 0.6892,
|
2816 |
+
"step": 4010
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.5361966054219881,
|
2820 |
+
"grad_norm": 3.917331449757074,
|
2821 |
+
"learning_rate": 1.3516711253850949e-05,
|
2822 |
+
"loss": 0.6417,
|
2823 |
+
"step": 4020
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.5375304278235353,
|
2827 |
+
"grad_norm": 1.66962823795828,
|
2828 |
+
"learning_rate": 1.3453543747960393e-05,
|
2829 |
+
"loss": 0.6784,
|
2830 |
+
"step": 4030
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.5388642502250826,
|
2834 |
+
"grad_norm": 4.181035760200595,
|
2835 |
+
"learning_rate": 1.3390403949409943e-05,
|
2836 |
+
"loss": 0.7115,
|
2837 |
+
"step": 4040
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.5401980726266298,
|
2841 |
+
"grad_norm": 2.4193575665243214,
|
2842 |
+
"learning_rate": 1.3327292989454273e-05,
|
2843 |
+
"loss": 0.7104,
|
2844 |
+
"step": 4050
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.541531895028177,
|
2848 |
+
"grad_norm": 2.0442192962046275,
|
2849 |
+
"learning_rate": 1.3264211998831374e-05,
|
2850 |
+
"loss": 0.7008,
|
2851 |
+
"step": 4060
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.5428657174297242,
|
2855 |
+
"grad_norm": 3.0689852808863183,
|
2856 |
+
"learning_rate": 1.3201162107742285e-05,
|
2857 |
+
"loss": 0.677,
|
2858 |
+
"step": 4070
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.5441995398312715,
|
2862 |
+
"grad_norm": 2.22632841251654,
|
2863 |
+
"learning_rate": 1.3138144445830841e-05,
|
2864 |
+
"loss": 0.6223,
|
2865 |
+
"step": 4080
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.5455333622328187,
|
2869 |
+
"grad_norm": 8.813265719863766,
|
2870 |
+
"learning_rate": 1.3075160142163442e-05,
|
2871 |
+
"loss": 0.6791,
|
2872 |
+
"step": 4090
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.5468671846343659,
|
2876 |
+
"grad_norm": 2.461550778463616,
|
2877 |
+
"learning_rate": 1.3012210325208818e-05,
|
2878 |
+
"loss": 0.7165,
|
2879 |
+
"step": 4100
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.5482010070359131,
|
2883 |
+
"grad_norm": 2.1304508310591896,
|
2884 |
+
"learning_rate": 1.2949296122817813e-05,
|
2885 |
+
"loss": 0.6905,
|
2886 |
+
"step": 4110
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.5495348294374603,
|
2890 |
+
"grad_norm": 2.1733622775851535,
|
2891 |
+
"learning_rate": 1.2886418662203174e-05,
|
2892 |
+
"loss": 0.6963,
|
2893 |
+
"step": 4120
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.5508686518390077,
|
2897 |
+
"grad_norm": 2.654530675610581,
|
2898 |
+
"learning_rate": 1.282357906991936e-05,
|
2899 |
+
"loss": 0.6796,
|
2900 |
+
"step": 4130
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.5522024742405549,
|
2904 |
+
"grad_norm": 2.6976858995246085,
|
2905 |
+
"learning_rate": 1.276077847184236e-05,
|
2906 |
+
"loss": 0.6922,
|
2907 |
+
"step": 4140
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.5535362966421021,
|
2911 |
+
"grad_norm": 2.5591371381474857,
|
2912 |
+
"learning_rate": 1.2698017993149504e-05,
|
2913 |
+
"loss": 0.7047,
|
2914 |
+
"step": 4150
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.5548701190436494,
|
2918 |
+
"grad_norm": 6.439964637422321,
|
2919 |
+
"learning_rate": 1.2635298758299336e-05,
|
2920 |
+
"loss": 0.6722,
|
2921 |
+
"step": 4160
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.5562039414451966,
|
2925 |
+
"grad_norm": 1.6222259612163727,
|
2926 |
+
"learning_rate": 1.2572621891011426e-05,
|
2927 |
+
"loss": 0.6646,
|
2928 |
+
"step": 4170
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.5575377638467438,
|
2932 |
+
"grad_norm": 3.410425968580818,
|
2933 |
+
"learning_rate": 1.2509988514246272e-05,
|
2934 |
+
"loss": 0.6894,
|
2935 |
+
"step": 4180
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.558871586248291,
|
2939 |
+
"grad_norm": 2.7111542804682327,
|
2940 |
+
"learning_rate": 1.2447399750185166e-05,
|
2941 |
+
"loss": 0.7196,
|
2942 |
+
"step": 4190
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.5602054086498383,
|
2946 |
+
"grad_norm": 3.3657872237953868,
|
2947 |
+
"learning_rate": 1.2384856720210086e-05,
|
2948 |
+
"loss": 0.7052,
|
2949 |
+
"step": 4200
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.5615392310513855,
|
2953 |
+
"grad_norm": 3.4383001609998143,
|
2954 |
+
"learning_rate": 1.2322360544883608e-05,
|
2955 |
+
"loss": 0.664,
|
2956 |
+
"step": 4210
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.5628730534529327,
|
2960 |
+
"grad_norm": 4.31412552867304,
|
2961 |
+
"learning_rate": 1.2259912343928831e-05,
|
2962 |
+
"loss": 0.6923,
|
2963 |
+
"step": 4220
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.5642068758544799,
|
2967 |
+
"grad_norm": 2.9738159323747655,
|
2968 |
+
"learning_rate": 1.2197513236209312e-05,
|
2969 |
+
"loss": 0.6787,
|
2970 |
+
"step": 4230
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.5655406982560273,
|
2974 |
+
"grad_norm": 14.42279175461777,
|
2975 |
+
"learning_rate": 1.213516433970902e-05,
|
2976 |
+
"loss": 0.7313,
|
2977 |
+
"step": 4240
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.5668745206575745,
|
2981 |
+
"grad_norm": 2.6156276324588195,
|
2982 |
+
"learning_rate": 1.2072866771512306e-05,
|
2983 |
+
"loss": 0.6856,
|
2984 |
+
"step": 4250
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.5682083430591217,
|
2988 |
+
"grad_norm": 2.692794641012978,
|
2989 |
+
"learning_rate": 1.201062164778389e-05,
|
2990 |
+
"loss": 0.6587,
|
2991 |
+
"step": 4260
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.5695421654606689,
|
2995 |
+
"grad_norm": 3.01896569407463,
|
2996 |
+
"learning_rate": 1.1948430083748864e-05,
|
2997 |
+
"loss": 0.7225,
|
2998 |
+
"step": 4270
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.5708759878622162,
|
3002 |
+
"grad_norm": 2.266424840293995,
|
3003 |
+
"learning_rate": 1.1886293193672707e-05,
|
3004 |
+
"loss": 0.6847,
|
3005 |
+
"step": 4280
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.5722098102637634,
|
3009 |
+
"grad_norm": 2.2789387948762987,
|
3010 |
+
"learning_rate": 1.1824212090841321e-05,
|
3011 |
+
"loss": 0.7011,
|
3012 |
+
"step": 4290
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.5735436326653106,
|
3016 |
+
"grad_norm": 2.826447974943076,
|
3017 |
+
"learning_rate": 1.1762187887541088e-05,
|
3018 |
+
"loss": 0.689,
|
3019 |
+
"step": 4300
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.5748774550668578,
|
3023 |
+
"grad_norm": 2.565293440960005,
|
3024 |
+
"learning_rate": 1.1700221695038944e-05,
|
3025 |
+
"loss": 0.7077,
|
3026 |
+
"step": 4310
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.5762112774684051,
|
3030 |
+
"grad_norm": 4.459154190124916,
|
3031 |
+
"learning_rate": 1.1638314623562459e-05,
|
3032 |
+
"loss": 0.6885,
|
3033 |
+
"step": 4320
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.5775450998699523,
|
3037 |
+
"grad_norm": 1.8187338733285852,
|
3038 |
+
"learning_rate": 1.1576467782279953e-05,
|
3039 |
+
"loss": 0.7103,
|
3040 |
+
"step": 4330
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.5788789222714995,
|
3044 |
+
"grad_norm": 4.078050868504266,
|
3045 |
+
"learning_rate": 1.1514682279280621e-05,
|
3046 |
+
"loss": 0.6742,
|
3047 |
+
"step": 4340
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.5802127446730467,
|
3051 |
+
"grad_norm": 2.4612673583806233,
|
3052 |
+
"learning_rate": 1.1452959221554684e-05,
|
3053 |
+
"loss": 0.6941,
|
3054 |
+
"step": 4350
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.5815465670745941,
|
3058 |
+
"grad_norm": 8.05059787591381,
|
3059 |
+
"learning_rate": 1.1391299714973553e-05,
|
3060 |
+
"loss": 0.7072,
|
3061 |
+
"step": 4360
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.5828803894761413,
|
3065 |
+
"grad_norm": 5.041675641180621,
|
3066 |
+
"learning_rate": 1.1329704864270005e-05,
|
3067 |
+
"loss": 0.6914,
|
3068 |
+
"step": 4370
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.5842142118776885,
|
3072 |
+
"grad_norm": 3.8176735967050672,
|
3073 |
+
"learning_rate": 1.1268175773018409e-05,
|
3074 |
+
"loss": 0.6489,
|
3075 |
+
"step": 4380
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.5855480342792357,
|
3079 |
+
"grad_norm": 2.068471874891413,
|
3080 |
+
"learning_rate": 1.1206713543614942e-05,
|
3081 |
+
"loss": 0.7182,
|
3082 |
+
"step": 4390
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.586881856680783,
|
3086 |
+
"grad_norm": 4.7154770167485065,
|
3087 |
+
"learning_rate": 1.1145319277257834e-05,
|
3088 |
+
"loss": 0.6961,
|
3089 |
+
"step": 4400
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.5882156790823302,
|
3093 |
+
"grad_norm": 3.3453200032391917,
|
3094 |
+
"learning_rate": 1.108399407392765e-05,
|
3095 |
+
"loss": 0.701,
|
3096 |
+
"step": 4410
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.5895495014838774,
|
3100 |
+
"grad_norm": 3.462978751346215,
|
3101 |
+
"learning_rate": 1.1022739032367572e-05,
|
3102 |
+
"loss": 0.6504,
|
3103 |
+
"step": 4420
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.5908833238854246,
|
3107 |
+
"grad_norm": 3.9283885591229075,
|
3108 |
+
"learning_rate": 1.0961555250063718e-05,
|
3109 |
+
"loss": 0.7025,
|
3110 |
+
"step": 4430
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.5922171462869719,
|
3114 |
+
"grad_norm": 2.2363832425317463,
|
3115 |
+
"learning_rate": 1.090044382322548e-05,
|
3116 |
+
"loss": 0.7106,
|
3117 |
+
"step": 4440
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.5935509686885191,
|
3121 |
+
"grad_norm": 2.4683539157329544,
|
3122 |
+
"learning_rate": 1.083940584676588e-05,
|
3123 |
+
"loss": 0.6919,
|
3124 |
+
"step": 4450
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.5948847910900663,
|
3128 |
+
"grad_norm": 1.6027050129978238,
|
3129 |
+
"learning_rate": 1.077844241428195e-05,
|
3130 |
+
"loss": 0.6579,
|
3131 |
+
"step": 4460
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.5962186134916136,
|
3135 |
+
"grad_norm": 4.272201666240297,
|
3136 |
+
"learning_rate": 1.071755461803515e-05,
|
3137 |
+
"loss": 0.6992,
|
3138 |
+
"step": 4470
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.5975524358931609,
|
3142 |
+
"grad_norm": 4.847908056514074,
|
3143 |
+
"learning_rate": 1.0656743548931784e-05,
|
3144 |
+
"loss": 0.6858,
|
3145 |
+
"step": 4480
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.5988862582947081,
|
3149 |
+
"grad_norm": 1.899776347699883,
|
3150 |
+
"learning_rate": 1.0596010296503469e-05,
|
3151 |
+
"loss": 0.7175,
|
3152 |
+
"step": 4490
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.6002200806962553,
|
3156 |
+
"grad_norm": 3.6851504324405533,
|
3157 |
+
"learning_rate": 1.0535355948887598e-05,
|
3158 |
+
"loss": 0.6731,
|
3159 |
+
"step": 4500
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.6015539030978025,
|
3163 |
+
"grad_norm": 20.935216614062877,
|
3164 |
+
"learning_rate": 1.0474781592807854e-05,
|
3165 |
+
"loss": 0.6548,
|
3166 |
+
"step": 4510
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.6028877254993498,
|
3170 |
+
"grad_norm": 5.577424675925709,
|
3171 |
+
"learning_rate": 1.0414288313554746e-05,
|
3172 |
+
"loss": 0.7263,
|
3173 |
+
"step": 4520
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.604221547900897,
|
3177 |
+
"grad_norm": 2.9726973141053334,
|
3178 |
+
"learning_rate": 1.0353877194966152e-05,
|
3179 |
+
"loss": 0.7446,
|
3180 |
+
"step": 4530
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.6055553703024442,
|
3184 |
+
"grad_norm": 2.021480129071628,
|
3185 |
+
"learning_rate": 1.0293549319407901e-05,
|
3186 |
+
"loss": 0.7137,
|
3187 |
+
"step": 4540
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.6068891927039914,
|
3191 |
+
"grad_norm": 1.9390208520343517,
|
3192 |
+
"learning_rate": 1.0233305767754391e-05,
|
3193 |
+
"loss": 0.6998,
|
3194 |
+
"step": 4550
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.6082230151055387,
|
3198 |
+
"grad_norm": 2.2439008274229337,
|
3199 |
+
"learning_rate": 1.0173147619369212e-05,
|
3200 |
+
"loss": 0.6977,
|
3201 |
+
"step": 4560
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.6095568375070859,
|
3205 |
+
"grad_norm": 3.002628922946286,
|
3206 |
+
"learning_rate": 1.0113075952085815e-05,
|
3207 |
+
"loss": 0.7119,
|
3208 |
+
"step": 4570
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.6108906599086331,
|
3212 |
+
"grad_norm": 1.8784698804400835,
|
3213 |
+
"learning_rate": 1.0053091842188196e-05,
|
3214 |
+
"loss": 0.6813,
|
3215 |
+
"step": 4580
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.6122244823101805,
|
3219 |
+
"grad_norm": 3.6775461109208702,
|
3220 |
+
"learning_rate": 9.993196364391614e-06,
|
3221 |
+
"loss": 0.6963,
|
3222 |
+
"step": 4590
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.6135583047117277,
|
3226 |
+
"grad_norm": 3.0082378136289636,
|
3227 |
+
"learning_rate": 9.93339059182334e-06,
|
3228 |
+
"loss": 0.6761,
|
3229 |
+
"step": 4600
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.6148921271132749,
|
3233 |
+
"grad_norm": 2.0259105048263297,
|
3234 |
+
"learning_rate": 9.873675596003424e-06,
|
3235 |
+
"loss": 0.6645,
|
3236 |
+
"step": 4610
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.6162259495148221,
|
3240 |
+
"grad_norm": 7.087002002369676,
|
3241 |
+
"learning_rate": 9.8140524468255e-06,
|
3242 |
+
"loss": 0.6836,
|
3243 |
+
"step": 4620
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.6175597719163693,
|
3247 |
+
"grad_norm": 6.82917662319771,
|
3248 |
+
"learning_rate": 9.754522212537614e-06,
|
3249 |
+
"loss": 0.6546,
|
3250 |
+
"step": 4630
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.6188935943179166,
|
3254 |
+
"grad_norm": 2.7798504683532546,
|
3255 |
+
"learning_rate": 9.695085959723088e-06,
|
3256 |
+
"loss": 0.6879,
|
3257 |
+
"step": 4640
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.6202274167194638,
|
3261 |
+
"grad_norm": 2.9169362806410124,
|
3262 |
+
"learning_rate": 9.63574475328141e-06,
|
3263 |
+
"loss": 0.7287,
|
3264 |
+
"step": 4650
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.621561239121011,
|
3268 |
+
"grad_norm": 1.9790125803612642,
|
3269 |
+
"learning_rate": 9.576499656409158e-06,
|
3270 |
+
"loss": 0.6933,
|
3271 |
+
"step": 4660
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.6228950615225582,
|
3275 |
+
"grad_norm": 3.533798783312709,
|
3276 |
+
"learning_rate": 9.517351730580939e-06,
|
3277 |
+
"loss": 0.6763,
|
3278 |
+
"step": 4670
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.6242288839241055,
|
3282 |
+
"grad_norm": 4.906070778847422,
|
3283 |
+
"learning_rate": 9.458302035530384e-06,
|
3284 |
+
"loss": 0.7089,
|
3285 |
+
"step": 4680
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.6255627063256527,
|
3289 |
+
"grad_norm": 3.448200148869349,
|
3290 |
+
"learning_rate": 9.399351629231154e-06,
|
3291 |
+
"loss": 0.6911,
|
3292 |
+
"step": 4690
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.6268965287271999,
|
3296 |
+
"grad_norm": 7.159835250493477,
|
3297 |
+
"learning_rate": 9.340501567877989e-06,
|
3298 |
+
"loss": 0.6387,
|
3299 |
+
"step": 4700
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.6282303511287473,
|
3303 |
+
"grad_norm": 7.692987979738203,
|
3304 |
+
"learning_rate": 9.281752905867778e-06,
|
3305 |
+
"loss": 0.6239,
|
3306 |
+
"step": 4710
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.6295641735302945,
|
3310 |
+
"grad_norm": 3.0193719069272187,
|
3311 |
+
"learning_rate": 9.223106695780677e-06,
|
3312 |
+
"loss": 0.6755,
|
3313 |
+
"step": 4720
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.6308979959318417,
|
3317 |
+
"grad_norm": 2.31533598338176,
|
3318 |
+
"learning_rate": 9.164563988361242e-06,
|
3319 |
+
"loss": 0.6772,
|
3320 |
+
"step": 4730
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.6322318183333889,
|
3324 |
+
"grad_norm": 4.426498530040442,
|
3325 |
+
"learning_rate": 9.106125832499604e-06,
|
3326 |
+
"loss": 0.689,
|
3327 |
+
"step": 4740
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.6335656407349362,
|
3331 |
+
"grad_norm": 3.055489437274157,
|
3332 |
+
"learning_rate": 9.047793275212686e-06,
|
3333 |
+
"loss": 0.687,
|
3334 |
+
"step": 4750
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.6348994631364834,
|
3338 |
+
"grad_norm": 7.12383434732346,
|
3339 |
+
"learning_rate": 8.989567361625427e-06,
|
3340 |
+
"loss": 0.6604,
|
3341 |
+
"step": 4760
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.6362332855380306,
|
3345 |
+
"grad_norm": 2.6553339556706788,
|
3346 |
+
"learning_rate": 8.931449134952075e-06,
|
3347 |
+
"loss": 0.6866,
|
3348 |
+
"step": 4770
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.6375671079395778,
|
3352 |
+
"grad_norm": 3.1179277884273806,
|
3353 |
+
"learning_rate": 8.873439636477484e-06,
|
3354 |
+
"loss": 0.6599,
|
3355 |
+
"step": 4780
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.638900930341125,
|
3359 |
+
"grad_norm": 2.4632186731676993,
|
3360 |
+
"learning_rate": 8.815539905538459e-06,
|
3361 |
+
"loss": 0.6957,
|
3362 |
+
"step": 4790
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.6402347527426723,
|
3366 |
+
"grad_norm": 2.243620092515075,
|
3367 |
+
"learning_rate": 8.757750979505137e-06,
|
3368 |
+
"loss": 0.678,
|
3369 |
+
"step": 4800
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.6415685751442195,
|
3373 |
+
"grad_norm": 1.559849971379389,
|
3374 |
+
"learning_rate": 8.700073893762408e-06,
|
3375 |
+
"loss": 0.675,
|
3376 |
+
"step": 4810
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.6429023975457668,
|
3380 |
+
"grad_norm": 2.174037487987736,
|
3381 |
+
"learning_rate": 8.642509681691347e-06,
|
3382 |
+
"loss": 0.6654,
|
3383 |
+
"step": 4820
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.6442362199473141,
|
3387 |
+
"grad_norm": 4.920990395145698,
|
3388 |
+
"learning_rate": 8.585059374650717e-06,
|
3389 |
+
"loss": 0.6839,
|
3390 |
+
"step": 4830
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.6455700423488613,
|
3394 |
+
"grad_norm": 2.4413434562237115,
|
3395 |
+
"learning_rate": 8.527724001958476e-06,
|
3396 |
+
"loss": 0.7275,
|
3397 |
+
"step": 4840
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.6469038647504085,
|
3401 |
+
"grad_norm": 1.8344146906183378,
|
3402 |
+
"learning_rate": 8.470504590873346e-06,
|
3403 |
+
"loss": 0.6961,
|
3404 |
+
"step": 4850
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.6482376871519557,
|
3408 |
+
"grad_norm": 1.9274949192717368,
|
3409 |
+
"learning_rate": 8.413402166576397e-06,
|
3410 |
+
"loss": 0.6802,
|
3411 |
+
"step": 4860
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.649571509553503,
|
3415 |
+
"grad_norm": 2.823435230180327,
|
3416 |
+
"learning_rate": 8.3564177521527e-06,
|
3417 |
+
"loss": 0.6545,
|
3418 |
+
"step": 4870
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.6509053319550502,
|
3422 |
+
"grad_norm": 12.01208015208349,
|
3423 |
+
"learning_rate": 8.29955236857297e-06,
|
3424 |
+
"loss": 0.6608,
|
3425 |
+
"step": 4880
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.6522391543565974,
|
3429 |
+
"grad_norm": 2.7110104949534146,
|
3430 |
+
"learning_rate": 8.242807034675289e-06,
|
3431 |
+
"loss": 0.6825,
|
3432 |
+
"step": 4890
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.6535729767581446,
|
3436 |
+
"grad_norm": 3.5400540139770467,
|
3437 |
+
"learning_rate": 8.186182767146848e-06,
|
3438 |
+
"loss": 0.7173,
|
3439 |
+
"step": 4900
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.6549067991596919,
|
3443 |
+
"grad_norm": 2.22571512795563,
|
3444 |
+
"learning_rate": 8.12968058050574e-06,
|
3445 |
+
"loss": 0.6979,
|
3446 |
+
"step": 4910
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.6562406215612391,
|
3450 |
+
"grad_norm": 9.112812839574897,
|
3451 |
+
"learning_rate": 8.073301487082768e-06,
|
3452 |
+
"loss": 0.7059,
|
3453 |
+
"step": 4920
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.6575744439627863,
|
3457 |
+
"grad_norm": 3.3720066783743867,
|
3458 |
+
"learning_rate": 8.017046497003308e-06,
|
3459 |
+
"loss": 0.6896,
|
3460 |
+
"step": 4930
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.6589082663643336,
|
3464 |
+
"grad_norm": 6.1591898293726945,
|
3465 |
+
"learning_rate": 7.960916618169233e-06,
|
3466 |
+
"loss": 0.697,
|
3467 |
+
"step": 4940
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.6602420887658809,
|
3471 |
+
"grad_norm": 2.7295855620488716,
|
3472 |
+
"learning_rate": 7.904912856240833e-06,
|
3473 |
+
"loss": 0.6892,
|
3474 |
+
"step": 4950
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.6615759111674281,
|
3478 |
+
"grad_norm": 2.345166503103055,
|
3479 |
+
"learning_rate": 7.849036214618802e-06,
|
3480 |
+
"loss": 0.6748,
|
3481 |
+
"step": 4960
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.6629097335689753,
|
3485 |
+
"grad_norm": 7.498544170227416,
|
3486 |
+
"learning_rate": 7.793287694426263e-06,
|
3487 |
+
"loss": 0.7016,
|
3488 |
+
"step": 4970
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.6642435559705225,
|
3492 |
+
"grad_norm": 2.0475845854151986,
|
3493 |
+
"learning_rate": 7.737668294490834e-06,
|
3494 |
+
"loss": 0.7179,
|
3495 |
+
"step": 4980
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.6655773783720698,
|
3499 |
+
"grad_norm": 3.114340952412098,
|
3500 |
+
"learning_rate": 7.68217901132672e-06,
|
3501 |
+
"loss": 0.6793,
|
3502 |
+
"step": 4990
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.666911200773617,
|
3506 |
+
"grad_norm": 3.83883079292243,
|
3507 |
+
"learning_rate": 7.626820839116876e-06,
|
3508 |
+
"loss": 0.6876,
|
3509 |
+
"step": 5000
|
3510 |
+
},
|
3511 |
+
{
|
3512 |
+
"epoch": 0.6682450231751642,
|
3513 |
+
"grad_norm": 8.432894431693887,
|
3514 |
+
"learning_rate": 7.571594769695181e-06,
|
3515 |
+
"loss": 0.6874,
|
3516 |
+
"step": 5010
|
3517 |
+
},
|
3518 |
+
{
|
3519 |
+
"epoch": 0.6695788455767114,
|
3520 |
+
"grad_norm": 2.674070025495073,
|
3521 |
+
"learning_rate": 7.51650179252867e-06,
|
3522 |
+
"loss": 0.7172,
|
3523 |
+
"step": 5020
|
3524 |
+
},
|
3525 |
+
{
|
3526 |
+
"epoch": 0.6709126679782587,
|
3527 |
+
"grad_norm": 5.973778009949667,
|
3528 |
+
"learning_rate": 7.461542894699818e-06,
|
3529 |
+
"loss": 0.7133,
|
3530 |
+
"step": 5030
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 0.6722464903798059,
|
3534 |
+
"grad_norm": 3.2677383520376795,
|
3535 |
+
"learning_rate": 7.406719060888837e-06,
|
3536 |
+
"loss": 0.7314,
|
3537 |
+
"step": 5040
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 0.6735803127813531,
|
3541 |
+
"grad_norm": 4.172418337526236,
|
3542 |
+
"learning_rate": 7.352031273356045e-06,
|
3543 |
+
"loss": 0.6805,
|
3544 |
+
"step": 5050
|
3545 |
+
},
|
3546 |
+
{
|
3547 |
+
"epoch": 0.6749141351829004,
|
3548 |
+
"grad_norm": 2.1121612232039477,
|
3549 |
+
"learning_rate": 7.297480511924263e-06,
|
3550 |
+
"loss": 0.664,
|
3551 |
+
"step": 5060
|
3552 |
+
},
|
3553 |
+
{
|
3554 |
+
"epoch": 0.6762479575844477,
|
3555 |
+
"grad_norm": 4.737396987962653,
|
3556 |
+
"learning_rate": 7.243067753961267e-06,
|
3557 |
+
"loss": 0.7202,
|
3558 |
+
"step": 5070
|
3559 |
+
},
|
3560 |
+
{
|
3561 |
+
"epoch": 0.6775817799859949,
|
3562 |
+
"grad_norm": 2.2892995457734053,
|
3563 |
+
"learning_rate": 7.188793974362254e-06,
|
3564 |
+
"loss": 0.6675,
|
3565 |
+
"step": 5080
|
3566 |
+
},
|
3567 |
+
{
|
3568 |
+
"epoch": 0.6789156023875421,
|
3569 |
+
"grad_norm": 2.5303725617403647,
|
3570 |
+
"learning_rate": 7.13466014553241e-06,
|
3571 |
+
"loss": 0.7053,
|
3572 |
+
"step": 5090
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 0.6802494247890893,
|
3576 |
+
"grad_norm": 2.1911360902224315,
|
3577 |
+
"learning_rate": 7.080667237369468e-06,
|
3578 |
+
"loss": 0.6363,
|
3579 |
+
"step": 5100
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 0.6815832471906366,
|
3583 |
+
"grad_norm": 1.7722416009046082,
|
3584 |
+
"learning_rate": 7.0268162172463215e-06,
|
3585 |
+
"loss": 0.6647,
|
3586 |
+
"step": 5110
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 0.6829170695921838,
|
3590 |
+
"grad_norm": 2.3107884233221396,
|
3591 |
+
"learning_rate": 6.973108049993714e-06,
|
3592 |
+
"loss": 0.6566,
|
3593 |
+
"step": 5120
|
3594 |
+
},
|
3595 |
+
{
|
3596 |
+
"epoch": 0.684250891993731,
|
3597 |
+
"grad_norm": 2.374293674041196,
|
3598 |
+
"learning_rate": 6.919543697882938e-06,
|
3599 |
+
"loss": 0.6772,
|
3600 |
+
"step": 5130
|
3601 |
+
},
|
3602 |
+
{
|
3603 |
+
"epoch": 0.6855847143952782,
|
3604 |
+
"grad_norm": 1.323614967454432,
|
3605 |
+
"learning_rate": 6.866124120608596e-06,
|
3606 |
+
"loss": 0.7142,
|
3607 |
+
"step": 5140
|
3608 |
+
},
|
3609 |
+
{
|
3610 |
+
"epoch": 0.6869185367968255,
|
3611 |
+
"grad_norm": 2.5080725989534463,
|
3612 |
+
"learning_rate": 6.812850275271412e-06,
|
3613 |
+
"loss": 0.6672,
|
3614 |
+
"step": 5150
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 0.6882523591983727,
|
3618 |
+
"grad_norm": 2.4821500591867527,
|
3619 |
+
"learning_rate": 6.759723116361077e-06,
|
3620 |
+
"loss": 0.6752,
|
3621 |
+
"step": 5160
|
3622 |
+
},
|
3623 |
+
{
|
3624 |
+
"epoch": 0.68958618159992,
|
3625 |
+
"grad_norm": 1.5591146033827414,
|
3626 |
+
"learning_rate": 6.706743595739151e-06,
|
3627 |
+
"loss": 0.6816,
|
3628 |
+
"step": 5170
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 0.6909200040014672,
|
3632 |
+
"grad_norm": 3.7818920756836967,
|
3633 |
+
"learning_rate": 6.653912662622009e-06,
|
3634 |
+
"loss": 0.6865,
|
3635 |
+
"step": 5180
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 0.6922538264030145,
|
3639 |
+
"grad_norm": 1.4437006855258527,
|
3640 |
+
"learning_rate": 6.601231263563832e-06,
|
3641 |
+
"loss": 0.6606,
|
3642 |
+
"step": 5190
|
3643 |
+
},
|
3644 |
+
{
|
3645 |
+
"epoch": 0.6935876488045617,
|
3646 |
+
"grad_norm": 16.033675993643524,
|
3647 |
+
"learning_rate": 6.548700342439648e-06,
|
3648 |
+
"loss": 0.6438,
|
3649 |
+
"step": 5200
|
3650 |
+
}
|
3651 |
+
],
|
3652 |
+
"logging_steps": 10,
|
3653 |
+
"max_steps": 7497,
|
3654 |
+
"num_input_tokens_seen": 0,
|
3655 |
+
"num_train_epochs": 1,
|
3656 |
+
"save_steps": 400,
|
3657 |
+
"stateful_callbacks": {
|
3658 |
+
"TrainerControl": {
|
3659 |
+
"args": {
|
3660 |
+
"should_epoch_stop": false,
|
3661 |
+
"should_evaluate": false,
|
3662 |
+
"should_log": false,
|
3663 |
+
"should_save": true,
|
3664 |
+
"should_training_stop": false
|
3665 |
+
},
|
3666 |
+
"attributes": {}
|
3667 |
+
}
|
3668 |
+
},
|
3669 |
+
"total_flos": 1.4214567069273293e+19,
|
3670 |
+
"train_batch_size": 4,
|
3671 |
+
"trial_name": null,
|
3672 |
+
"trial_params": null
|
3673 |
+
}
|
checkpoint-5200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-5200/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-5600/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-5600/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|