Update hyperparams.yaml
Browse files- hyperparams.yaml +42 -222
hyperparams.yaml
CHANGED
@@ -1,125 +1,19 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
#
|
4 |
-
|
5 |
-
# Model: Tacotron2
|
6 |
-
# Tokens: Raw characters (English text)
|
7 |
-
# losses: Transducer
|
8 |
-
# Training: LJSpeech
|
9 |
-
# Authors: Georges Abous-Rjeili, Artem Ploujnikov, Yingzhi Wang
|
10 |
-
# ############################################################################
|
11 |
|
12 |
-
|
13 |
-
###################################
|
14 |
-
# Experiment Parameters and setup #
|
15 |
-
###################################
|
16 |
-
seed: 1234
|
17 |
-
__set_seed: !apply:speechbrain.utils.seed_everything [1234]
|
18 |
-
output_folder: ./results/tacotron2/1234
|
19 |
-
save_folder: ./results/tacotron2/1234/save
|
20 |
-
train_log: ./results/tacotron2/1234/train_log.txt
|
21 |
-
epochs: 1000
|
22 |
-
keep_checkpoint_interval: 100
|
23 |
-
wandb_id: tacotron-sk
|
24 |
-
wandb_user: sulaiman-kagumire
|
25 |
-
wandb_project: tacotron2-lg-cv
|
26 |
-
###################################
|
27 |
-
# Progress Samples #
|
28 |
-
###################################
|
29 |
-
# Progress samples are used to monitor the progress
|
30 |
-
# of an ongoing training session by outputting samples
|
31 |
-
# of spectrograms, alignments, etc at regular intervals
|
32 |
-
|
33 |
-
# Whether to enable progress samples
|
34 |
-
progress_samples: false
|
35 |
-
|
36 |
-
# The path where the samples will be stored
|
37 |
-
progress_sample_path: ./results/tacotron2/1234/samples
|
38 |
-
# The interval, in epochs. For instance, if it is set to 5,
|
39 |
-
# progress samples will be output every 5 epochs
|
40 |
-
progress_samples_interval: 100
|
41 |
-
# The sample size for raw batch samples saved in batch.pth
|
42 |
-
# (useful mostly for model debugging)
|
43 |
-
progress_batch_sample_size: 3
|
44 |
-
|
45 |
-
#################################
|
46 |
-
# Data files and pre-processing #
|
47 |
-
#################################
|
48 |
-
data_folder: data
|
49 |
-
# e.g, /localscratch/ljspeech
|
50 |
-
|
51 |
-
train_json: ./results/tacotron2/1234/save/train.json
|
52 |
-
valid_json: ./results/tacotron2/1234/save/valid.json
|
53 |
-
test_json: ./results/tacotron2/1234/save/test.json
|
54 |
-
|
55 |
-
splits: [train, valid]
|
56 |
-
split_ratio: [90, 10]
|
57 |
-
|
58 |
-
skip_prep: false
|
59 |
-
init_from_pretrained: true
|
60 |
-
# Use the original preprocessing from nvidia
|
61 |
-
# The cleaners to be used (applicable to nvidia only)
|
62 |
-
text_cleaners: [transliteration_cleaners]
|
63 |
-
|
64 |
-
################################
|
65 |
-
# Audio Parameters #
|
66 |
-
################################
|
67 |
-
sample_rate: 22050
|
68 |
-
hop_length: 256
|
69 |
-
win_length: 1024
|
70 |
n_mel_channels: 80
|
71 |
-
|
72 |
-
mel_fmin: 0.0
|
73 |
-
mel_fmax: 8000.0
|
74 |
-
mel_normalized: false
|
75 |
-
power: 1
|
76 |
-
norm: slaney
|
77 |
-
mel_scale: slaney
|
78 |
-
dynamic_range_compression: true
|
79 |
-
|
80 |
-
################################
|
81 |
-
# Optimization Hyperparameters #
|
82 |
-
################################
|
83 |
-
learning_rate: 0.001
|
84 |
-
weight_decay: 0.000006
|
85 |
-
batch_size: 256
|
86 |
-
num_workers: 96
|
87 |
-
mask_padding: true
|
88 |
-
guided_attention_sigma: 0.2
|
89 |
-
guided_attention_weight: 50.0
|
90 |
-
guided_attention_weight_half_life: 10.
|
91 |
-
guided_attention_hard_stop: 50
|
92 |
-
gate_loss_weight: 1.0
|
93 |
-
|
94 |
-
train_dataloader_opts:
|
95 |
-
batch_size: 256
|
96 |
-
drop_last: false #True #False
|
97 |
-
num_workers: 96
|
98 |
-
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
99 |
-
|
100 |
-
valid_dataloader_opts:
|
101 |
-
batch_size: 256
|
102 |
-
num_workers: 96
|
103 |
-
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
104 |
-
|
105 |
-
test_dataloader_opts:
|
106 |
-
batch_size: 256
|
107 |
-
num_workers: 96
|
108 |
-
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
109 |
-
|
110 |
-
################################
|
111 |
-
# Model Parameters and model #
|
112 |
-
################################
|
113 |
-
n_symbols: 148 #fixed depending on symbols in textToSequence
|
114 |
symbols_embedding_dim: 512
|
115 |
-
|
116 |
-
# Encoder parameters
|
117 |
encoder_kernel_size: 5
|
118 |
encoder_n_convolutions: 3
|
119 |
encoder_embedding_dim: 512
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
n_frames_per_step: 1
|
124 |
decoder_rnn_dim: 1024
|
125 |
prenet_dim: 256
|
@@ -127,123 +21,49 @@ max_decoder_steps: 1000
|
|
127 |
gate_threshold: 0.5
|
128 |
p_attention_dropout: 0.1
|
129 |
p_decoder_dropout: 0.1
|
130 |
-
decoder_no_early_stopping: false
|
131 |
-
|
132 |
-
# Attention parameters
|
133 |
-
attention_rnn_dim: 1024
|
134 |
-
attention_dim: 128
|
135 |
-
|
136 |
-
# Location Layer parameters
|
137 |
-
attention_location_n_filters: 32
|
138 |
-
attention_location_kernel_size: 31
|
139 |
-
|
140 |
-
# Mel-post processing network parameters
|
141 |
postnet_embedding_dim: 512
|
142 |
postnet_kernel_size: 5
|
143 |
postnet_n_convolutions: 5
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
n_fft: 1024
|
150 |
-
n_mels: 80
|
151 |
-
f_min: 0.0
|
152 |
-
f_max: 8000.0
|
153 |
-
power: 1
|
154 |
-
normalized: false
|
155 |
-
norm: slaney
|
156 |
-
mel_scale: slaney
|
157 |
-
compression: true
|
158 |
-
|
159 |
-
#model
|
160 |
-
model: &id002 !new:speechbrain.lobes.models.Tacotron2.Tacotron2
|
161 |
-
|
162 |
-
#optimizer
|
163 |
-
mask_padding: true
|
164 |
-
n_mel_channels: 80
|
165 |
# symbols
|
166 |
-
n_symbols:
|
167 |
-
symbols_embedding_dim:
|
168 |
# encoder
|
169 |
-
encoder_kernel_size:
|
170 |
-
encoder_n_convolutions:
|
171 |
-
encoder_embedding_dim:
|
172 |
# attention
|
173 |
-
attention_rnn_dim:
|
174 |
-
attention_dim:
|
175 |
# attention location
|
176 |
-
attention_location_n_filters:
|
177 |
-
attention_location_kernel_size:
|
178 |
# decoder
|
179 |
-
n_frames_per_step:
|
180 |
-
decoder_rnn_dim:
|
181 |
-
prenet_dim:
|
182 |
-
max_decoder_steps:
|
183 |
-
gate_threshold:
|
184 |
-
p_attention_dropout:
|
185 |
-
p_decoder_dropout:
|
186 |
# postnet
|
187 |
-
postnet_embedding_dim:
|
188 |
-
postnet_kernel_size:
|
189 |
-
postnet_n_convolutions:
|
190 |
-
decoder_no_early_stopping:
|
191 |
-
|
192 |
-
guided_attention_scheduler: &id001 !new:speechbrain.nnet.schedulers.StepScheduler
|
193 |
-
initial_value: 50.0
|
194 |
-
half_life: 10.
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
guided_attention_weight: 50.0
|
199 |
-
guided_attention_sigma: 0.2
|
200 |
-
guided_attention_scheduler: *id001
|
201 |
-
guided_attention_hard_stop: 50
|
202 |
|
203 |
modules:
|
204 |
-
|
205 |
-
opt_class: !name:torch.optim.Adam
|
206 |
-
lr: 0.001
|
207 |
-
weight_decay: 0.000006
|
208 |
-
|
209 |
-
#epoch object
|
210 |
-
epoch_counter: &id003 !new:speechbrain.utils.epoch_loop.EpochCounter
|
211 |
-
limit: 1000
|
212 |
-
|
213 |
-
# train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
214 |
-
# save_file: !ref <train_log>
|
215 |
-
train_logger: !new:speechbrain.utils.train_logger.WandBLogger
|
216 |
-
initializer: !name:wandb.init
|
217 |
-
id: tacotron-sk
|
218 |
-
name: tacotron-sk
|
219 |
-
entity: sulaiman-kagumire
|
220 |
-
project: tacotron2-lg-cv
|
221 |
-
reinit: true
|
222 |
-
resume: allow
|
223 |
-
|
224 |
-
|
225 |
-
#annealing_function
|
226 |
-
lr_annealing: &id004 !new:speechbrain.nnet.schedulers.IntervalScheduler
|
227 |
-
|
228 |
-
#infer: !name:speechbrain.lobes.models.Tacotron2.infer
|
229 |
-
|
230 |
-
intervals:
|
231 |
-
- steps: 6000
|
232 |
-
lr: 0.0005
|
233 |
-
- steps: 8000
|
234 |
-
lr: 0.0003
|
235 |
-
- steps: 10000
|
236 |
-
lr: 0.0001
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
recoverables:
|
242 |
-
model: *id002
|
243 |
-
counter: *id003
|
244 |
-
scheduler: *id004
|
245 |
-
progress_sample_logger: !new:speechbrain.utils.train_logger.ProgressSampleLogger
|
246 |
-
output_path: ./results/tacotron2/1234/samples
|
247 |
-
batch_sample_size: 3
|
248 |
-
formats:
|
249 |
-
raw_batch: raw
|
|
|
1 |
+
################################
|
2 |
+
# Model: Tacotroon2 for TTS
|
3 |
+
# Authors: Artem Ploujnikov, Yingzhi Wang
|
4 |
+
# ################################
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
mask_padding: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
n_mel_channels: 80
|
8 |
+
n_symbols: 148
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
symbols_embedding_dim: 512
|
|
|
|
|
10 |
encoder_kernel_size: 5
|
11 |
encoder_n_convolutions: 3
|
12 |
encoder_embedding_dim: 512
|
13 |
+
attention_rnn_dim: 1024
|
14 |
+
attention_dim: 128
|
15 |
+
attention_location_n_filters: 32
|
16 |
+
attention_location_kernel_size: 31
|
17 |
n_frames_per_step: 1
|
18 |
decoder_rnn_dim: 1024
|
19 |
prenet_dim: 256
|
|
|
21 |
gate_threshold: 0.5
|
22 |
p_attention_dropout: 0.1
|
23 |
p_decoder_dropout: 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
postnet_embedding_dim: 512
|
25 |
postnet_kernel_size: 5
|
26 |
postnet_n_convolutions: 5
|
27 |
+
decoder_no_early_stopping: False
|
28 |
+
sample_rate: 22050
|
29 |
|
30 |
+
# Model
|
31 |
+
model: !new:speechbrain.lobes.models.Tacotron2.Tacotron2
|
32 |
+
mask_padding: !ref <mask_padding>
|
33 |
+
n_mel_channels: !ref <n_mel_channels>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# symbols
|
35 |
+
n_symbols: !ref <n_symbols>
|
36 |
+
symbols_embedding_dim: !ref <symbols_embedding_dim>
|
37 |
# encoder
|
38 |
+
encoder_kernel_size: !ref <encoder_kernel_size>
|
39 |
+
encoder_n_convolutions: !ref <encoder_n_convolutions>
|
40 |
+
encoder_embedding_dim: !ref <encoder_embedding_dim>
|
41 |
# attention
|
42 |
+
attention_rnn_dim: !ref <attention_rnn_dim>
|
43 |
+
attention_dim: !ref <attention_dim>
|
44 |
# attention location
|
45 |
+
attention_location_n_filters: !ref <attention_location_n_filters>
|
46 |
+
attention_location_kernel_size: !ref <attention_location_kernel_size>
|
47 |
# decoder
|
48 |
+
n_frames_per_step: !ref <n_frames_per_step>
|
49 |
+
decoder_rnn_dim: !ref <decoder_rnn_dim>
|
50 |
+
prenet_dim: !ref <prenet_dim>
|
51 |
+
max_decoder_steps: !ref <max_decoder_steps>
|
52 |
+
gate_threshold: !ref <gate_threshold>
|
53 |
+
p_attention_dropout: !ref <p_attention_dropout>
|
54 |
+
p_decoder_dropout: !ref <p_decoder_dropout>
|
55 |
# postnet
|
56 |
+
postnet_embedding_dim: !ref <postnet_embedding_dim>
|
57 |
+
postnet_kernel_size: !ref <postnet_kernel_size>
|
58 |
+
postnet_n_convolutions: !ref <postnet_n_convolutions>
|
59 |
+
decoder_no_early_stopping: !ref <decoder_no_early_stopping>
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# Function that converts the text into a sequence of valid characters.
|
62 |
+
text_to_sequence: !name:speechbrain.utils.text_to_sequence.text_to_sequence
|
|
|
|
|
|
|
|
|
63 |
|
64 |
modules:
|
65 |
+
model: !ref <model>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
68 |
+
loadables:
|
69 |
+
model: !ref <model>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|