pangu-350M / tokenization_gptpangu.py
sunzeyeah's picture
init
12e1347
import torch
import sentencepiece
import jieba
import numpy as np
from transformers.tokenization_utils import PreTrainedTokenizer
jieba.add_word('<s>')
jieba.add_word('</s>')
jieba.add_word('<eot>')
jieba.add_word('<unk>')
jieba.add_word('<sep>')
jieba.add_word('<pad>')
class GPTPanguTokenizer(PreTrainedTokenizer):
# Ref: https://git.openi.org.cn/PCL-Platform.Intelligence/PanGu-Alpha/src/branch/master/tokenization_jieba.py
vocab_files_names = {
"model_file": "vocab.model"
}
def __init__(
self,
model_file,
**kwargs
):
super().__init__(**kwargs)
self.sp = sentencepiece.SentencePieceProcessor()
self.sp.Load(model_file=model_file)
self.translator = str.maketrans(" \n", "\u2582\u2583")
# special token ids
# self.eos_token_id = self.sp.piece_to_id("<eot>")
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if self.bos_token_id is not None:
if token_ids_1 is None:
return [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
bos = [self.bos_token_id]
sep = [self.sep_token_id]
eos = [self.eos_token_id]
return bos + token_ids_0 + sep + token_ids_1 + eos
else:
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
sep = [self.sep_token_id]
eos = [self.eos_token_id]
return token_ids_0 + sep + token_ids_1 + eos
def tokenize(self, text, **kwargs):
""" Tokenize a string. """
seg_list = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)]
return seg_list
def convert_tokens_to_ids(self, tokens):
if tokens is None:
return None
if isinstance(tokens, str):
return self._convert_token_to_id_with_added_voc(tokens)
special_tokens_index = [i for i, token in enumerate(tokens) if token in self.all_special_tokens]
ids = []
i = 0
for j in special_tokens_index:
new_seg = " ".join(tokens[i:j])
ids.extend(self.sp.encode(new_seg))
ids.append(self._convert_token_to_id(tokens[j]))
i = j + 1
new_seg = " ".join(tokens[i:])
ids.extend(self.sp.encode(new_seg))
return ids
# new_seg = " ".join(tokens)
# return self.sp.encode(new_seg)
# # return tokens
def _convert_token_to_id(self, token):
return self.sp.piece_to_id(token)
def _convert_id_to_token(self, index):
return self.sp.id_to_piece(index)
def convert_ids_to_tokens(self, ids):
return self.decode(ids)
def decode(self, ids, **kwargs):
if isinstance(ids, torch.Tensor) or isinstance(ids, np.ndarray):
ids = ids.tolist()
if kwargs.get('skip_special_tokens', None) is True:
ids = [token_id for token_id in ids if token_id not in self.all_special_ids]
text = self.sp.decode(ids)
if isinstance(text, list):
text = text[0]
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n')#.replace('⁇', self.unk_token)
return text
@property
def vocab_size(self) -> int:
"""
`int`: Size of the base vocabulary (without the added tokens).
"""
return len(self.sp)