mskrt commited on
Commit
0b0d11b
verified
1 Parent(s): 71e1a91

Upload 13 files

Browse files
model_index.json CHANGED
@@ -6,5 +6,10 @@
6
  "guidance_scale": null,
7
  "lift": null,
8
  "num_inference_steps": null,
9
- "seed": null
 
 
 
 
 
10
  }
 
6
  "guidance_scale": null,
7
  "lift": null,
8
  "num_inference_steps": null,
9
+ "scheduler": "EulerDiscreteScheduler",
10
+ "seed": null,
11
+ "text_encoder": "CLIPTextModel",
12
+ "tokenizer": "CLIPTokenizer",
13
+ "unet": "UNet2DConditionModel",
14
+ "vae": "AutoencoderKL"
15
  }
pipeline.py CHANGED
@@ -9,13 +9,13 @@ from diffusers.configuration_utils import ConfigMixin
9
  class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
10
  """SuperDiffPipeline."""
11
 
12
- def __init__(self, model: Callable, vae: Callable, text_encoder: Callable, scheduler: Callable, tokenizer: Callable, **kwargs) -> None:
13
  """__init__.
14
 
15
  Parameters
16
  ----------
17
- model : Callable
18
- model
19
  vae : Callable
20
  vae
21
  text_encoder : Callable
@@ -33,7 +33,7 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
33
 
34
  """
35
  super().__init__()
36
- self.model = model
37
  self.vae = vae
38
  self.text_encoder = text_encoder
39
  self.tokenizer = tokenizer
@@ -42,7 +42,7 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
 
44
  self.vae.to(device)
45
- self.model.to(device)
46
  self.text_encoder.to(device)
47
 
48
  self.register_to_config(
@@ -124,7 +124,7 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
124
  embeddings : Callable
125
  embeddings
126
  """
127
- def v(_x, _e): return self.model(
128
  _x / ((sigma**2 + 1) ** 0.5), t, encoder_hidden_states=_e
129
  ).sample
130
  embeds = torch.cat(embeddings)
@@ -191,7 +191,7 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
191
  self.seed
192
  ) # Seed generator to create the initial latent noise
193
  latents = torch.randn(
194
- (batch_size, self.model.config.in_channels, height // 8, width // 8),
195
  generator=generator,
196
  device=self.device,
197
  )
 
9
  class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
10
  """SuperDiffPipeline."""
11
 
12
+ def __init__(self, unet: Callable, vae: Callable, text_encoder: Callable, scheduler: Callable, tokenizer: Callable, **kwargs) -> None:
13
  """__init__.
14
 
15
  Parameters
16
  ----------
17
+ unet : Callable
18
+ unet
19
  vae : Callable
20
  vae
21
  text_encoder : Callable
 
33
 
34
  """
35
  super().__init__()
36
+ self.unet = unet
37
  self.vae = vae
38
  self.text_encoder = text_encoder
39
  self.tokenizer = tokenizer
 
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
 
44
  self.vae.to(device)
45
+ self.unet.to(device)
46
  self.text_encoder.to(device)
47
 
48
  self.register_to_config(
 
124
  embeddings : Callable
125
  embeddings
126
  """
127
+ def v(_x, _e): return self.unet(
128
  _x / ((sigma**2 + 1) ** 0.5), t, encoder_hidden_states=_e
129
  ).sample
130
  embeds = torch.cat(embeddings)
 
191
  self.seed
192
  ) # Seed generator to create the initial latent noise
193
  latents = torch.randn(
194
+ (batch_size, self.unet.config.in_channels, height // 8, width // 8),
195
  generator=generator,
196
  device=self.device,
197
  )
unet/config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.31.0",
4
+ "_name_or_path": "CompVis/stable-diffusion-v1-4",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": null,
9
+ "attention_head_dim": 8,
10
+ "attention_type": "default",
11
+ "block_out_channels": [
12
+ 320,
13
+ 640,
14
+ 1280,
15
+ 1280
16
+ ],
17
+ "center_input_sample": false,
18
+ "class_embed_type": null,
19
+ "class_embeddings_concat": false,
20
+ "conv_in_kernel": 3,
21
+ "conv_out_kernel": 3,
22
+ "cross_attention_dim": 768,
23
+ "cross_attention_norm": null,
24
+ "down_block_types": [
25
+ "CrossAttnDownBlock2D",
26
+ "CrossAttnDownBlock2D",
27
+ "CrossAttnDownBlock2D",
28
+ "DownBlock2D"
29
+ ],
30
+ "downsample_padding": 1,
31
+ "dropout": 0.0,
32
+ "dual_cross_attention": false,
33
+ "encoder_hid_dim": null,
34
+ "encoder_hid_dim_type": null,
35
+ "flip_sin_to_cos": true,
36
+ "freq_shift": 0,
37
+ "in_channels": 4,
38
+ "layers_per_block": 2,
39
+ "mid_block_only_cross_attention": null,
40
+ "mid_block_scale_factor": 1,
41
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
42
+ "norm_eps": 1e-05,
43
+ "norm_num_groups": 32,
44
+ "num_attention_heads": null,
45
+ "num_class_embeds": null,
46
+ "only_cross_attention": false,
47
+ "out_channels": 4,
48
+ "projection_class_embeddings_input_dim": null,
49
+ "resnet_out_scale_factor": 1.0,
50
+ "resnet_skip_time_act": false,
51
+ "resnet_time_scale_shift": "default",
52
+ "reverse_transformer_layers_per_block": null,
53
+ "sample_size": 64,
54
+ "time_cond_proj_dim": null,
55
+ "time_embedding_act_fn": null,
56
+ "time_embedding_dim": null,
57
+ "time_embedding_type": "positional",
58
+ "timestep_post_act": null,
59
+ "transformer_layers_per_block": 1,
60
+ "up_block_types": [
61
+ "UpBlock2D",
62
+ "CrossAttnUpBlock2D",
63
+ "CrossAttnUpBlock2D",
64
+ "CrossAttnUpBlock2D"
65
+ ],
66
+ "upcast_attention": false,
67
+ "use_linear_projection": false
68
+ }
unet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d54d1800033f872c2ede03a45de06d176a53146e43bc9bdb81b0429560a07dc9
3
+ size 3438167536