--- base_model: - CompVis/stable-diffusion-v1-4 pipeline_tag: text-to-image tags: - art ---
## Requirements This pipeline can be run with the following packages & versions: - `PyTorch 2.5.1` - `Diffusers 0.32.1` - `Accelerate 1.2.1` - `Transformers 4.47.1` You can install these with: ``` pip install torch pip install diffusers accelerate transformers ``` ## Example usage ``` from PIL import Image from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("superdiff/superdiff-sd-v1-4", custom_pipeline='pipeline', trust_remote_code=True) output = pipeline("a flamingo", "a candy cane", seed=1, num_inference_steps=1000, batch_size=1) image = Image.fromarray(output[0].cpu().numpy()) image.save("superdiff_output.png") ``` Arguments that can be set by user in `pipeline()`: - `prompt_1` [required]: text prompt describing first concept to superimpose (e.g. "a flamingo") - `prompt_2`[required]: text prompt describing second concept to superimpose (e.g. "a candy cane") - `seed`[optional: default=None]: seed for random noise generator for reproducibility; for non-deterministic outputs, set to `None` - `num_inference_steps`[optional: default=1000]: number of denoising steps (we recommend 1000!) - `batch_size` [optional: default=1]: batch size - `lift` [optional: default=0.0]: bias value that favours generation towards one prompt over the other - `guidance_scale` [optional: default=7.5]: scale for classifier-free guidance - `height`, `width` [optional: default=512]: height and width of generated images To replicate images from Section 4.2 of the paper, you can use the following: ``` image = pipeline(prompt_1, prompt_2, seed=1, num_inference_steps=1000, batch_size=20, lift=0.0, guidance_scale=7.5) ``` (Note: the runtime for a batch size of 1 on an NVIDIA A40 GPU is around 3 mins 30 sec.) ## Citation **BibTeX:** ``` @article{skreta2024superposition, title={The Superposition of Diffusion Models Using the It$\backslash$\^{} o Density Estimator}, author={Skreta, Marta and Atanackovic, Lazar and Bose, Avishek Joey and Tong, Alexander and Neklyudov, Kirill}, journal={arXiv preprint arXiv:2412.17762}, year={2024} } ```