--- base_model: tomaszki/nous-twelve tags: - axolotl - generated_from_trainer model-index: - name: titos results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: tomaszki/nous-twelve tokenizer_type: AutoTokenizer hub_model_id: superfriends/titos load_in_8bit: false load_in_4bit: false strict: false chat_template: inst datasets: - path: winglian/charley type: sharegpt conversation: mistral split: train _test_datasets: - path: winglian/latest-barley type: sharegpt conversation: mistral split: test dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: relora-instruct-nous wandb_entity: oaaic wandb_watch: wandb_name: fft wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit adam_beta1: 0.95 adam_beta2: 0.9 adam_epsilon: 0.0001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.000009 neftune_noise_alpha: 5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: True early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero1.json # multi-gpu only weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ```

# titos This model is a fine-tuned version of [tomaszki/nous-twelve](https://huggingface.co/tomaszki/nous-twelve) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.95,0.9) and epsilon=0.0001 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0