LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 218.36 +/- 65.70
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a40d9f4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a40d9f560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a40d9f5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a40d9f680>", "_build": "<function ActorCriticPolicy._build at 0x7f6a40d9f710>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a40d9f7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a40d9f830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a40d9f8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a40d9f950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a40d9f9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a40d9fa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6a40dd9f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652121702.7838886, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqE4z0pYH26R64oO1BRvzaTD0Y7G/s/ugAAgD8AAIA/GjuvvXussbqGacy6ETSKOBAJIjsVR2c5AACAPwAAgD9zjo89e5iPuqWk0roT87m1D+4huwZ/9DkAAIA/AACAPwYxiT6U2Ti9KzUuPaCdwLs2B6C+5ryLvAAAgD8AAIA/ZuXMvfb0JrrT4bm7eYHVN4A0ZLruISa3AACAPwAAgD+AMtS9j343uqs1ZTtBAQI46Ee7Ocj9KLoAAIA/AAAAAG2RhD5vhxE93p3FOh7tvTlnLqY+1P0gugAAgD8AAIA/00i4vtVngb2drTs8HiunvPIWfD6qDqM9AACAPwAAAACN70g+dGzLvOb1CT0ct5O7gx4yvsXNY7wAAIA/AACAPwD9NT0U+Ki60aS6O7Vpc7aWICy6ONxntQAAgD8AAIA/mrtSveFygbpYaxe8thE0tg4SeTsFw6E1AACAPwAAgD8Aym89b8VOPbA5iD4igpu+amSfPv7z+L0AAAAAAAAAADrnCb7Xn246QzSXuY/IfTYA5Y68cmiyOAAAgD8AAIA/Zn6qvFzTO7o9ij27prmctVjIl7uqBlw6AACAPwAAgD8ztwq+Citzu2o78jpVyUI4Lz29PFQ4E7oAAIA/AACAP4AY+r0pHGe4o461OzKRCLls8ti63o4SOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdji6SncfTkCUhpRSlIwBbJRN6AOMAXSUR0CIjjy+6Ae8dX2UKGgGaAloD0MI2XiwxW7CY0CUhpRSlGgVTegDaBZHQIiOn9UCJXR1fZQoaAZoCWgPQwgRcAhVapleQJSGlFKUaBVN6ANoFkdAiJK/rrxAjnV9lChoBmgJaA9DCGk50ENtAUBAlIaUUpRoFUvuaBZHQIiTAs3AEdN1fZQoaAZoCWgPQwhKRs7Cnt1VQJSGlFKUaBVN6ANoFkdAiJRqISDh+HV9lChoBmgJaA9DCJDbL5+syBBAlIaUUpRoFUvmaBZHQIjeE8V58jR1fZQoaAZoCWgPQwh/pfPhWY5XQJSGlFKUaBVN6ANoFkdAiOYMn7YTTXV9lChoBmgJaA9DCKXXZmMlBllAlIaUUpRoFU3oA2gWR0CI80qrilzmdX2UKGgGaAloD0MIA9AoXfrqVECUhpRSlGgVTegDaBZHQIj5sCih37l1fZQoaAZoCWgPQwhCXDl75wFiQJSGlFKUaBVN6ANoFkdAiP6ETYdyUHV9lChoBmgJaA9DCJwYkpOJCFxAlIaUUpRoFU3oA2gWR0CJHCctGus+dX2UKGgGaAloD0MIG0gXm9bTYECUhpRSlGgVTegDaBZHQIkg/bwjMV11fZQoaAZoCWgPQwgtQUZAhUdcQJSGlFKUaBVN6ANoFkdAiTLJMg2ZRnV9lChoBmgJaA9DCFor2hznH2VAlIaUUpRoFU3oA2gWR0CJOyFL39JjdX2UKGgGaAloD0MIZHPVPEcFYECUhpRSlGgVTegDaBZHQIlKM+zMRpV1fZQoaAZoCWgPQwhL6ZleYoJcQJSGlFKUaBVN6ANoFkdAiU62cawUxnV9lChoBmgJaA9DCGhAvRk1c1tAlIaUUpRoFU3oA2gWR0CJTr6nBLwndX2UKGgGaAloD0MI1o7iHHW4SMCUhpRSlGgVS9BoFkdAiVQMvysjmnV9lChoBmgJaA9DCD6zJEBNkUxAlIaUUpRoFU3oA2gWR0CJVPDn/1g6dX2UKGgGaAloD0MIlNqLaLvIYUCUhpRSlGgVTegDaBZHQIlVXfuTibV1fZQoaAZoCWgPQwgPtW0YBV1fQJSGlFKUaBVN6ANoFkdAiVniQcPvrnV9lChoBmgJaA9DCOxLNh7sEmBAlIaUUpRoFU3oA2gWR0CJW3FbVz6rdX2UKGgGaAloD0MIAI49ey4bPMCUhpRSlGgVS+toFkdAiWy2dEsrd3V9lChoBmgJaA9DCIf6XdiaaTtAlIaUUpRoFUvaaBZHQIlwR/gBLf11fZQoaAZoCWgPQwiaIsDpXe9gQJSGlFKUaBVN6ANoFkdAiaCjV6NVBHV9lChoBmgJaA9DCBJpG3+i2mFAlIaUUpRoFU3oA2gWR0CJp8m8/UvxdX2UKGgGaAloD0MIJjYf14ZYYUCUhpRSlGgVTegDaBZHQImzoy2x6fJ1fZQoaAZoCWgPQwg7HF2lu8BjQJSGlFKUaBVN6ANoFkdAibnJ3X7LuHV9lChoBmgJaA9DCAskKH6MqRRAlIaUUpRoFUu8aBZHQIm8XVVghKV1fZQoaAZoCWgPQwgTYi6p2kZcQJSGlFKUaBVN6ANoFkdAib47tAs053V9lChoBmgJaA9DCEM9fQT+hEHAlIaUUpRoFU0VAWgWR0CJ0JJaq0dBdX2UKGgGaAloD0MIAdvBiH2AR0CUhpRSlGgVTegDaBZHQInZtNg0CRx1fZQoaAZoCWgPQwgGuYswReEgQJSGlFKUaBVLt2gWR0CJ2dLEDQqqdX2UKGgGaAloD0MITIi5pGqhV0CUhpRSlGgVTegDaBZHQIneQVfu1F91fZQoaAZoCWgPQwg83A4Ni5kvQJSGlFKUaBVLrGgWR0CJ9XejVQQ+dX2UKGgGaAloD0MIbJbLRudGXUCUhpRSlGgVTegDaBZHQIn4VN8E3bV1fZQoaAZoCWgPQwgrobskzoBZQJSGlFKUaBVN6ANoFkdAigiXrD63zHV9lChoBmgJaA9DCOwy/Kcb7FlAlIaUUpRoFU3oA2gWR0CKDV2zOX3QdX2UKGgGaAloD0MIwf9WsuMEY0CUhpRSlGgVTegDaBZHQIoThV6u4gB1fZQoaAZoCWgPQwh9eQH20Y9kQJSGlFKUaBVN6ANoFkdAihT2Dg62fHV9lChoBmgJaA9DCAwCK4cWllZAlIaUUpRoFU3oA2gWR0CKGkhL5AQhdX2UKGgGaAloD0MIqoJRSZ3iW0CUhpRSlGgVTegDaBZHQIocIFHJ9y91fZQoaAZoCWgPQwhGzsKedidaQJSGlFKUaBVN6ANoFkdAijHJnpSrHXV9lChoBmgJaA9DCL/09ueirGJAlIaUUpRoFU3oA2gWR0CKNeShakhzdX2UKGgGaAloD0MIKC1cVuHBYkCUhpRSlGgVTegDaBZHQIqDw/mknCx1fZQoaAZoCWgPQwgaGk8EcXYzQJSGlFKUaBVL0mgWR0CKiYQDFId3dX2UKGgGaAloD0MIx0rMs5LXWECUhpRSlGgVTegDaBZHQIqLGqNp/PR1fZQoaAZoCWgPQwgZr3lV5xlgQJSGlFKUaBVN6ANoFkdAio3vLgXMyXV9lChoBmgJaA9DCLLxYIvdD1FAlIaUUpRoFU3oA2gWR0CKouHIIWxhdX2UKGgGaAloD0MIAvOQKZ/TYkCUhpRSlGgVTegDaBZHQIqrqEal1r91fZQoaAZoCWgPQwh3vTRFgFphQJSGlFKUaBVN6ANoFkdAirARoh6jWXV9lChoBmgJaA9DCPryAuwjbGFAlIaUUpRoFU3oA2gWR0CKxd48EFGHdX2UKGgGaAloD0MI+IiYEkmsWkCUhpRSlGgVTegDaBZHQIrIW+ueSSx1fZQoaAZoCWgPQwh3TrNAuzZiQJSGlFKUaBVN6ANoFkdAitXZaNdZ73V9lChoBmgJaA9DCPJ4Wn7g0GBAlIaUUpRoFU3oA2gWR0CK2bwmVqvedX2UKGgGaAloD0MI007N5QZFYECUhpRSlGgVTegDaBZHQIre9lsguAZ1fZQoaAZoCWgPQwgrNBDLZm1cQJSGlFKUaBVN6ANoFkdAiuAtITXarXV9lChoBmgJaA9DCDV6NUBpJlNAlIaUUpRoFU3oA2gWR0CK5Lzz3AVPdX2UKGgGaAloD0MIXfxtT5D4WkCUhpRSlGgVTegDaBZHQIrmS9sabWp1fZQoaAZoCWgPQwjChxIteS9VQJSGlFKUaBVN6ANoFkdAivfSxZ+x4nV9lChoBmgJaA9DCIpamlshZF9AlIaUUpRoFU3oA2gWR0CLRNK3d9DydX2UKGgGaAloD0MI6L0xBADYU0CUhpRSlGgVTegDaBZHQItJ2a2F36h1fZQoaAZoCWgPQwitaHOc2+heQJSGlFKUaBVN6ANoFkdAi0r1DSgGr3V9lChoBmgJaA9DCJuSrMPRyl5AlIaUUpRoFU3oA2gWR0CLTT+so2GZdX2UKGgGaAloD0MIHHxhMtX3YECUhpRSlGgVTegDaBZHQItfRa9sabZ1fZQoaAZoCWgPQwj2KcdkcTBSQJSGlFKUaBVN6ANoFkdAi2ck1l5GBnV9lChoBmgJaA9DCFn5ZTDGbmFAlIaUUpRoFU3oA2gWR0CLayY2sJY1dX2UKGgGaAloD0MI/kgRGVbfUECUhpRSlGgVS6xoFkdAi4AezdDYy3V9lChoBmgJaA9DCOPiqNzEe2JAlIaUUpRoFU3oA2gWR0CLgDnoxHoYdX2UKGgGaAloD0MIXHFxVG7KZkCUhpRSlGgVTegDaBZHQIuCmRmseXB1fZQoaAZoCWgPQwgMIlLTLv1eQJSGlFKUaBVN6ANoFkdAi4/6/Zdv9HV9lChoBmgJaA9DCEF/oUeMfhPAlIaUUpRoFU0IAWgWR0CLkc0NSZSfdX2UKGgGaAloD0MITYbj+QzTYECUhpRSlGgVTegDaBZHQIuTtxn3+Mt1fZQoaAZoCWgPQwj8brplh7hbQJSGlFKUaBVN6ANoFkdAi5h+iBXjl3V9lChoBmgJaA9DCPWgoBQtuWFAlIaUUpRoFU3oA2gWR0CLmaEU0vXcdX2UKGgGaAloD0MII7vSMlLXYkCUhpRSlGgVTegDaBZHQIud8/dIoVp1fZQoaAZoCWgPQwjSj4ZT5jxdQJSGlFKUaBVN6ANoFkdAi59+HaewtHV9lChoBmgJaA9DCFyq0hbXslxAlIaUUpRoFU3oA2gWR0CLsgWCVbA2dX2UKGgGaAloD0MIJ6PKMO7GJECUhpRSlGgVS7ZoFkdAi7gmQKa5PXV9lChoBmgJaA9DCIrHRbWI1GFAlIaUUpRoFU3oA2gWR0CMAwivgWJrdX2UKGgGaAloD0MIIt46//bKYkCUhpRSlGgVTegDaBZHQIwIcynDR+l1fZQoaAZoCWgPQwhU4GQbOANkQJSGlFKUaBVN6ANoFkdAjAnYEOiFkHV9lChoBmgJaA9DCF5nQ/6Z4RbAlIaUUpRoFUvOaBZHQIwKURFqi491fZQoaAZoCWgPQwgcYOY7eH1hQJSGlFKUaBVN6ANoFkdAjAySUcGTtHV9lChoBmgJaA9DCFdgyOrWaGFAlIaUUpRoFU3oA2gWR0CMII0UoKD1dX2UKGgGaAloD0MIQX42ct2gUECUhpRSlGgVS9VoFkdAjCLqNAC4jXV9lChoBmgJaA9DCJ0q3zMSET9AlIaUUpRoFUvcaBZHQIwpuWUr08N1fZQoaAZoCWgPQwinIarwZ0gVwJSGlFKUaBVL22gWR0CMKfp0wJw9dX2UKGgGaAloD0MIBoNr7ui2XkCUhpRSlGgVTegDaBZHQIxCaVMVUMp1fZQoaAZoCWgPQwiFBfcDniVgQJSGlFKUaBVN6ANoFkdAjEKHxSYPXnV9lChoBmgJaA9DCDKqDONu/2JAlIaUUpRoFU3oA2gWR0CMROGCZnctdX2UKGgGaAloD0MIPUUOETfAYkCUhpRSlGgVTegDaBZHQIxRy3/givB1fZQoaAZoCWgPQwiMguDxbdtiQJSGlFKUaBVN6ANoFkdAjFOTXJ5miHV9lChoBmgJaA9DCD57LlOTilpAlIaUUpRoFU3oA2gWR0CMVWxWT5fudX2UKGgGaAloD0MIq5Z0lINDXUCUhpRSlGgVTegDaBZHQIxaFWOp84R1fZQoaAZoCWgPQwgrMjogCdxgQJSGlFKUaBVN6ANoFkdAjFsr0Bfa6HV9lChoBmgJaA9DCHl3ZKw2oUBAlIaUUpRoFUvSaBZHQIxegfIS13N1fZQoaAZoCWgPQwiW0cjnFVcxQJSGlFKUaBVL1GgWR0CMXtsyi22HdX2UKGgGaAloD0MIprbUQd7WY0CUhpRSlGgVTegDaBZHQIxfTc9GI9F1fZQoaAZoCWgPQwgeVOI6xm5ZQJSGlFKUaBVN6ANoFkdAjHGzNMXaanVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2a6ee09fbea63c250f78a9c8416b935b26330fbd677d103687f1182cc3a85dd
|
3 |
+
size 144028
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a40d9f4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a40d9f560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a40d9f5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a40d9f680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6a40d9f710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6a40d9f7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a40d9f830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6a40d9f8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a40d9f950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a40d9f9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a40d9fa70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6a40dd9f60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652121702.7838886,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqE4z0pYH26R64oO1BRvzaTD0Y7G/s/ugAAgD8AAIA/GjuvvXussbqGacy6ETSKOBAJIjsVR2c5AACAPwAAgD9zjo89e5iPuqWk0roT87m1D+4huwZ/9DkAAIA/AACAPwYxiT6U2Ti9KzUuPaCdwLs2B6C+5ryLvAAAgD8AAIA/ZuXMvfb0JrrT4bm7eYHVN4A0ZLruISa3AACAPwAAgD+AMtS9j343uqs1ZTtBAQI46Ee7Ocj9KLoAAIA/AAAAAG2RhD5vhxE93p3FOh7tvTlnLqY+1P0gugAAgD8AAIA/00i4vtVngb2drTs8HiunvPIWfD6qDqM9AACAPwAAAACN70g+dGzLvOb1CT0ct5O7gx4yvsXNY7wAAIA/AACAPwD9NT0U+Ki60aS6O7Vpc7aWICy6ONxntQAAgD8AAIA/mrtSveFygbpYaxe8thE0tg4SeTsFw6E1AACAPwAAgD8Aym89b8VOPbA5iD4igpu+amSfPv7z+L0AAAAAAAAAADrnCb7Xn246QzSXuY/IfTYA5Y68cmiyOAAAgD8AAIA/Zn6qvFzTO7o9ij27prmctVjIl7uqBlw6AACAPwAAgD8ztwq+Citzu2o78jpVyUI4Lz29PFQ4E7oAAIA/AACAP4AY+r0pHGe4o461OzKRCLls8ti63o4SOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdji6SncfTkCUhpRSlIwBbJRN6AOMAXSUR0CIjjy+6Ae8dX2UKGgGaAloD0MI2XiwxW7CY0CUhpRSlGgVTegDaBZHQIiOn9UCJXR1fZQoaAZoCWgPQwgRcAhVapleQJSGlFKUaBVN6ANoFkdAiJK/rrxAjnV9lChoBmgJaA9DCGk50ENtAUBAlIaUUpRoFUvuaBZHQIiTAs3AEdN1fZQoaAZoCWgPQwhKRs7Cnt1VQJSGlFKUaBVN6ANoFkdAiJRqISDh+HV9lChoBmgJaA9DCJDbL5+syBBAlIaUUpRoFUvmaBZHQIjeE8V58jR1fZQoaAZoCWgPQwh/pfPhWY5XQJSGlFKUaBVN6ANoFkdAiOYMn7YTTXV9lChoBmgJaA9DCKXXZmMlBllAlIaUUpRoFU3oA2gWR0CI80qrilzmdX2UKGgGaAloD0MIA9AoXfrqVECUhpRSlGgVTegDaBZHQIj5sCih37l1fZQoaAZoCWgPQwhCXDl75wFiQJSGlFKUaBVN6ANoFkdAiP6ETYdyUHV9lChoBmgJaA9DCJwYkpOJCFxAlIaUUpRoFU3oA2gWR0CJHCctGus+dX2UKGgGaAloD0MIG0gXm9bTYECUhpRSlGgVTegDaBZHQIkg/bwjMV11fZQoaAZoCWgPQwgtQUZAhUdcQJSGlFKUaBVN6ANoFkdAiTLJMg2ZRnV9lChoBmgJaA9DCFor2hznH2VAlIaUUpRoFU3oA2gWR0CJOyFL39JjdX2UKGgGaAloD0MIZHPVPEcFYECUhpRSlGgVTegDaBZHQIlKM+zMRpV1fZQoaAZoCWgPQwhL6ZleYoJcQJSGlFKUaBVN6ANoFkdAiU62cawUxnV9lChoBmgJaA9DCGhAvRk1c1tAlIaUUpRoFU3oA2gWR0CJTr6nBLwndX2UKGgGaAloD0MI1o7iHHW4SMCUhpRSlGgVS9BoFkdAiVQMvysjmnV9lChoBmgJaA9DCD6zJEBNkUxAlIaUUpRoFU3oA2gWR0CJVPDn/1g6dX2UKGgGaAloD0MIlNqLaLvIYUCUhpRSlGgVTegDaBZHQIlVXfuTibV1fZQoaAZoCWgPQwgPtW0YBV1fQJSGlFKUaBVN6ANoFkdAiVniQcPvrnV9lChoBmgJaA9DCOxLNh7sEmBAlIaUUpRoFU3oA2gWR0CJW3FbVz6rdX2UKGgGaAloD0MIAI49ey4bPMCUhpRSlGgVS+toFkdAiWy2dEsrd3V9lChoBmgJaA9DCIf6XdiaaTtAlIaUUpRoFUvaaBZHQIlwR/gBLf11fZQoaAZoCWgPQwiaIsDpXe9gQJSGlFKUaBVN6ANoFkdAiaCjV6NVBHV9lChoBmgJaA9DCBJpG3+i2mFAlIaUUpRoFU3oA2gWR0CJp8m8/UvxdX2UKGgGaAloD0MIJjYf14ZYYUCUhpRSlGgVTegDaBZHQImzoy2x6fJ1fZQoaAZoCWgPQwg7HF2lu8BjQJSGlFKUaBVN6ANoFkdAibnJ3X7LuHV9lChoBmgJaA9DCAskKH6MqRRAlIaUUpRoFUu8aBZHQIm8XVVghKV1fZQoaAZoCWgPQwgTYi6p2kZcQJSGlFKUaBVN6ANoFkdAib47tAs053V9lChoBmgJaA9DCEM9fQT+hEHAlIaUUpRoFU0VAWgWR0CJ0JJaq0dBdX2UKGgGaAloD0MIAdvBiH2AR0CUhpRSlGgVTegDaBZHQInZtNg0CRx1fZQoaAZoCWgPQwgGuYswReEgQJSGlFKUaBVLt2gWR0CJ2dLEDQqqdX2UKGgGaAloD0MITIi5pGqhV0CUhpRSlGgVTegDaBZHQIneQVfu1F91fZQoaAZoCWgPQwg83A4Ni5kvQJSGlFKUaBVLrGgWR0CJ9XejVQQ+dX2UKGgGaAloD0MIbJbLRudGXUCUhpRSlGgVTegDaBZHQIn4VN8E3bV1fZQoaAZoCWgPQwgrobskzoBZQJSGlFKUaBVN6ANoFkdAigiXrD63zHV9lChoBmgJaA9DCOwy/Kcb7FlAlIaUUpRoFU3oA2gWR0CKDV2zOX3QdX2UKGgGaAloD0MIwf9WsuMEY0CUhpRSlGgVTegDaBZHQIoThV6u4gB1fZQoaAZoCWgPQwh9eQH20Y9kQJSGlFKUaBVN6ANoFkdAihT2Dg62fHV9lChoBmgJaA9DCAwCK4cWllZAlIaUUpRoFU3oA2gWR0CKGkhL5AQhdX2UKGgGaAloD0MIqoJRSZ3iW0CUhpRSlGgVTegDaBZHQIocIFHJ9y91fZQoaAZoCWgPQwhGzsKedidaQJSGlFKUaBVN6ANoFkdAijHJnpSrHXV9lChoBmgJaA9DCL/09ueirGJAlIaUUpRoFU3oA2gWR0CKNeShakhzdX2UKGgGaAloD0MIKC1cVuHBYkCUhpRSlGgVTegDaBZHQIqDw/mknCx1fZQoaAZoCWgPQwgaGk8EcXYzQJSGlFKUaBVL0mgWR0CKiYQDFId3dX2UKGgGaAloD0MIx0rMs5LXWECUhpRSlGgVTegDaBZHQIqLGqNp/PR1fZQoaAZoCWgPQwgZr3lV5xlgQJSGlFKUaBVN6ANoFkdAio3vLgXMyXV9lChoBmgJaA9DCLLxYIvdD1FAlIaUUpRoFU3oA2gWR0CKouHIIWxhdX2UKGgGaAloD0MIAvOQKZ/TYkCUhpRSlGgVTegDaBZHQIqrqEal1r91fZQoaAZoCWgPQwh3vTRFgFphQJSGlFKUaBVN6ANoFkdAirARoh6jWXV9lChoBmgJaA9DCPryAuwjbGFAlIaUUpRoFU3oA2gWR0CKxd48EFGHdX2UKGgGaAloD0MI+IiYEkmsWkCUhpRSlGgVTegDaBZHQIrIW+ueSSx1fZQoaAZoCWgPQwh3TrNAuzZiQJSGlFKUaBVN6ANoFkdAitXZaNdZ73V9lChoBmgJaA9DCPJ4Wn7g0GBAlIaUUpRoFU3oA2gWR0CK2bwmVqvedX2UKGgGaAloD0MI007N5QZFYECUhpRSlGgVTegDaBZHQIre9lsguAZ1fZQoaAZoCWgPQwgrNBDLZm1cQJSGlFKUaBVN6ANoFkdAiuAtITXarXV9lChoBmgJaA9DCDV6NUBpJlNAlIaUUpRoFU3oA2gWR0CK5Lzz3AVPdX2UKGgGaAloD0MIXfxtT5D4WkCUhpRSlGgVTegDaBZHQIrmS9sabWp1fZQoaAZoCWgPQwjChxIteS9VQJSGlFKUaBVN6ANoFkdAivfSxZ+x4nV9lChoBmgJaA9DCIpamlshZF9AlIaUUpRoFU3oA2gWR0CLRNK3d9DydX2UKGgGaAloD0MI6L0xBADYU0CUhpRSlGgVTegDaBZHQItJ2a2F36h1fZQoaAZoCWgPQwitaHOc2+heQJSGlFKUaBVN6ANoFkdAi0r1DSgGr3V9lChoBmgJaA9DCJuSrMPRyl5AlIaUUpRoFU3oA2gWR0CLTT+so2GZdX2UKGgGaAloD0MIHHxhMtX3YECUhpRSlGgVTegDaBZHQItfRa9sabZ1fZQoaAZoCWgPQwj2KcdkcTBSQJSGlFKUaBVN6ANoFkdAi2ck1l5GBnV9lChoBmgJaA9DCFn5ZTDGbmFAlIaUUpRoFU3oA2gWR0CLayY2sJY1dX2UKGgGaAloD0MI/kgRGVbfUECUhpRSlGgVS6xoFkdAi4AezdDYy3V9lChoBmgJaA9DCOPiqNzEe2JAlIaUUpRoFU3oA2gWR0CLgDnoxHoYdX2UKGgGaAloD0MIXHFxVG7KZkCUhpRSlGgVTegDaBZHQIuCmRmseXB1fZQoaAZoCWgPQwgMIlLTLv1eQJSGlFKUaBVN6ANoFkdAi4/6/Zdv9HV9lChoBmgJaA9DCEF/oUeMfhPAlIaUUpRoFU0IAWgWR0CLkc0NSZSfdX2UKGgGaAloD0MITYbj+QzTYECUhpRSlGgVTegDaBZHQIuTtxn3+Mt1fZQoaAZoCWgPQwj8brplh7hbQJSGlFKUaBVN6ANoFkdAi5h+iBXjl3V9lChoBmgJaA9DCPWgoBQtuWFAlIaUUpRoFU3oA2gWR0CLmaEU0vXcdX2UKGgGaAloD0MII7vSMlLXYkCUhpRSlGgVTegDaBZHQIud8/dIoVp1fZQoaAZoCWgPQwjSj4ZT5jxdQJSGlFKUaBVN6ANoFkdAi59+HaewtHV9lChoBmgJaA9DCFyq0hbXslxAlIaUUpRoFU3oA2gWR0CLsgWCVbA2dX2UKGgGaAloD0MIJ6PKMO7GJECUhpRSlGgVS7ZoFkdAi7gmQKa5PXV9lChoBmgJaA9DCIrHRbWI1GFAlIaUUpRoFU3oA2gWR0CMAwivgWJrdX2UKGgGaAloD0MIIt46//bKYkCUhpRSlGgVTegDaBZHQIwIcynDR+l1fZQoaAZoCWgPQwhU4GQbOANkQJSGlFKUaBVN6ANoFkdAjAnYEOiFkHV9lChoBmgJaA9DCF5nQ/6Z4RbAlIaUUpRoFUvOaBZHQIwKURFqi491fZQoaAZoCWgPQwgcYOY7eH1hQJSGlFKUaBVN6ANoFkdAjAySUcGTtHV9lChoBmgJaA9DCFdgyOrWaGFAlIaUUpRoFU3oA2gWR0CMII0UoKD1dX2UKGgGaAloD0MIQX42ct2gUECUhpRSlGgVS9VoFkdAjCLqNAC4jXV9lChoBmgJaA9DCJ0q3zMSET9AlIaUUpRoFUvcaBZHQIwpuWUr08N1fZQoaAZoCWgPQwinIarwZ0gVwJSGlFKUaBVL22gWR0CMKfp0wJw9dX2UKGgGaAloD0MIBoNr7ui2XkCUhpRSlGgVTegDaBZHQIxCaVMVUMp1fZQoaAZoCWgPQwiFBfcDniVgQJSGlFKUaBVN6ANoFkdAjEKHxSYPXnV9lChoBmgJaA9DCDKqDONu/2JAlIaUUpRoFU3oA2gWR0CMROGCZnctdX2UKGgGaAloD0MIPUUOETfAYkCUhpRSlGgVTegDaBZHQIxRy3/givB1fZQoaAZoCWgPQwiMguDxbdtiQJSGlFKUaBVN6ANoFkdAjFOTXJ5miHV9lChoBmgJaA9DCD57LlOTilpAlIaUUpRoFU3oA2gWR0CMVWxWT5fudX2UKGgGaAloD0MIq5Z0lINDXUCUhpRSlGgVTegDaBZHQIxaFWOp84R1fZQoaAZoCWgPQwgrMjogCdxgQJSGlFKUaBVN6ANoFkdAjFsr0Bfa6HV9lChoBmgJaA9DCHl3ZKw2oUBAlIaUUpRoFUvSaBZHQIxegfIS13N1fZQoaAZoCWgPQwiW0cjnFVcxQJSGlFKUaBVL1GgWR0CMXtsyi22HdX2UKGgGaAloD0MIprbUQd7WY0CUhpRSlGgVTegDaBZHQIxfTc9GI9F1fZQoaAZoCWgPQwgeVOI6xm5ZQJSGlFKUaBVN6ANoFkdAjHGzNMXaanVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64485b1fdd458ed8128ce130f445f9e38e6c7ba24063ad5c56ed3f8e28e06079
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caa179b1eac2ecb73efe431526bb7a309cf0e219ddd08e865cd13e97664b3ce8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d94e40505060caefb084bb0c1a81b48371dcbed256ff5c2ab9c0bddfe3bf713
|
3 |
+
size 248911
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 218.36163496403415, "std_reward": 65.70239772250126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T18:55:22.820070"}
|