File size: 2,532 Bytes
a9a4072
 
08629a7
5a19c1b
6ccf17d
 
5a19c1b
 
08629a7
 
 
a9a4072
 
08629a7
 
a9a4072
08629a7
a9a4072
08629a7
 
5a19c1b
 
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
a9a4072
08629a7
 
 
 
 
 
 
 
 
 
 
 
a9a4072
08629a7
a9a4072
08629a7
 
5a19c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a4072
 
08629a7
a9a4072
08629a7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: xlsr-nm-nomi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlsr-nm-nomi

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3324
- Wer: 0.3245

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 4.9773        | 6.0606  | 200  | 3.0522          | 1.0    |
| 2.8875        | 12.1212 | 400  | 2.3569          | 0.9959 |
| 1.5131        | 18.1818 | 600  | 0.5795          | 0.6024 |
| 0.4675        | 24.2424 | 800  | 0.4022          | 0.4523 |
| 0.2474        | 30.3030 | 1000 | 0.3396          | 0.4422 |
| 0.1573        | 36.3636 | 1200 | 0.3188          | 0.3611 |
| 0.1162        | 42.4242 | 1400 | 0.3450          | 0.3570 |
| 0.0858        | 48.4848 | 1600 | 0.3162          | 0.3469 |
| 0.0675        | 54.5455 | 1800 | 0.2832          | 0.3327 |
| 0.058         | 60.6061 | 2000 | 0.2904          | 0.3266 |
| 0.0415        | 66.6667 | 2200 | 0.3555          | 0.3306 |
| 0.0348        | 72.7273 | 2400 | 0.3116          | 0.3327 |
| 0.0234        | 78.7879 | 2600 | 0.2944          | 0.3245 |
| 0.0215        | 84.8485 | 2800 | 0.3259          | 0.3266 |
| 0.0208        | 90.9091 | 3000 | 0.3312          | 0.3185 |
| 0.0168        | 96.9697 | 3200 | 0.3324          | 0.3245 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0