--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr-nm-nomi results: [] --- # xlsr-nm-nomi This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3324 - Wer: 0.3245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.9773 | 6.0606 | 200 | 3.0522 | 1.0 | | 2.8875 | 12.1212 | 400 | 2.3569 | 0.9959 | | 1.5131 | 18.1818 | 600 | 0.5795 | 0.6024 | | 0.4675 | 24.2424 | 800 | 0.4022 | 0.4523 | | 0.2474 | 30.3030 | 1000 | 0.3396 | 0.4422 | | 0.1573 | 36.3636 | 1200 | 0.3188 | 0.3611 | | 0.1162 | 42.4242 | 1400 | 0.3450 | 0.3570 | | 0.0858 | 48.4848 | 1600 | 0.3162 | 0.3469 | | 0.0675 | 54.5455 | 1800 | 0.2832 | 0.3327 | | 0.058 | 60.6061 | 2000 | 0.2904 | 0.3266 | | 0.0415 | 66.6667 | 2200 | 0.3555 | 0.3306 | | 0.0348 | 72.7273 | 2400 | 0.3116 | 0.3327 | | 0.0234 | 78.7879 | 2600 | 0.2944 | 0.3245 | | 0.0215 | 84.8485 | 2800 | 0.3259 | 0.3266 | | 0.0208 | 90.9091 | 3000 | 0.3312 | 0.3185 | | 0.0168 | 96.9697 | 3200 | 0.3324 | 0.3245 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0