Upload 2 files
Browse files- engine.py +390 -0
- requirements.txt +4 -0
engine.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
import re
|
7 |
+
import string
|
8 |
+
import nltk
|
9 |
+
import time
|
10 |
+
nltk.download('punkt')
|
11 |
+
nltk.download('stopwords')
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('cmudict')
|
14 |
+
from nltk.corpus import stopwords
|
15 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
16 |
+
from nltk.corpus import cmudict
|
17 |
+
|
18 |
+
folderpath = r'C:\Users/suwes/SentimentEngine/'
|
19 |
+
textfile_path = f"{folderpath}inputtext/"
|
20 |
+
stopword_path = f"{folderpath}StopWords/"
|
21 |
+
masterdict_path = f"{folderpath}MasterDictionary/"
|
22 |
+
|
23 |
+
def createdf():
|
24 |
+
inputxlsx = os.path.join(folderpath, "Input.xlsx")
|
25 |
+
dfxlsx = pd.read_excel(inputxlsx)
|
26 |
+
print(dfxlsx)
|
27 |
+
df_urls = dfxlsx['URL']
|
28 |
+
#print(df_urls)
|
29 |
+
return dfxlsx
|
30 |
+
|
31 |
+
df = createdf()
|
32 |
+
|
33 |
+
def extract(df):
|
34 |
+
#extracting article text from urls
|
35 |
+
def extract_urltext(url):
|
36 |
+
response = requests.get(url)#send GET req to url
|
37 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
38 |
+
article_title = soup.find('title').get_text()#find and extract tile of article
|
39 |
+
article_content = soup.find('div', class_= 'td-pb-span8 td-main-content')#find and extract article text
|
40 |
+
article_text = ''
|
41 |
+
if article_content:
|
42 |
+
for para in article_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
|
43 |
+
article_text += para.get_text()
|
44 |
+
#print(article_title)
|
45 |
+
#print(article_text)
|
46 |
+
return article_title, article_text
|
47 |
+
|
48 |
+
#url = 'https://insights.blackcoffer.com/rising-it-cities-and-its-impact-on-the-economy-environment-infrastructure-and-city-life-by-the-year-2040/'
|
49 |
+
#extract_urltext(url)
|
50 |
+
#article_title, article_text = extract_urltext(url)
|
51 |
+
|
52 |
+
for index, row in df.iterrows():
|
53 |
+
url = row['URL']
|
54 |
+
url_id = row['URL_ID']
|
55 |
+
article_title, article_text = extract_urltext(url)
|
56 |
+
#save text to file
|
57 |
+
filename = f"{folderpath}inputtext/{url_id}.txt"
|
58 |
+
with open(filename, 'w', encoding = 'utf-8') as file:
|
59 |
+
file.write(article_title+ '\n\n' +article_text)
|
60 |
+
print(f"text saved to file {filename}")
|
61 |
+
|
62 |
+
#extract data
|
63 |
+
extract(df)
|
64 |
+
|
65 |
+
def transform(df):
|
66 |
+
#cleaning stop words
|
67 |
+
#reading stop words from stopword files
|
68 |
+
def read_stopwords(stopword_folder):
|
69 |
+
stopwords = set()
|
70 |
+
filenames = os.listdir(stopword_folder)
|
71 |
+
# process each file
|
72 |
+
for filename in filenames:
|
73 |
+
filepath = os.path.join(stopword_folder, filename)
|
74 |
+
#read stop words from each file
|
75 |
+
with open(filepath, 'r', encoding= 'utf-8', errors='ignore') as file:
|
76 |
+
stopwords.update(map(str.strip, file.readlines()))
|
77 |
+
return stopwords
|
78 |
+
#stop words
|
79 |
+
stopwords = read_stopwords(stopword_path)
|
80 |
+
|
81 |
+
#cleaning stop words from text
|
82 |
+
def clean_stopwords(text, stopwords):
|
83 |
+
#tokenize text
|
84 |
+
words = word_tokenize(text)
|
85 |
+
#remove stop words from text
|
86 |
+
cleaned_words = [word for word in words if word.lower() not in stopwords]
|
87 |
+
#reconstructing cleaned text
|
88 |
+
cleaned_text = ' '.join(cleaned_words)
|
89 |
+
return cleaned_text
|
90 |
+
|
91 |
+
#cleaning stop words from a directory/multiple files
|
92 |
+
def clean_stopwords_directory(directory, stopwords):
|
93 |
+
#list all files in directory
|
94 |
+
filenames = os.listdir(directory)
|
95 |
+
#cleaning each file
|
96 |
+
for filename in filenames:
|
97 |
+
filepath = os.path.join(directory, filename)
|
98 |
+
#read text from each file
|
99 |
+
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
|
100 |
+
text = file.read()
|
101 |
+
#clean stop words from file text
|
102 |
+
cleaned_text = clean_stopwords(text, stopwords)
|
103 |
+
#write back cleaned text
|
104 |
+
with open(filepath, 'w', encoding= 'utf-8', errors='ignore') as file:
|
105 |
+
file.write(cleaned_text)
|
106 |
+
print(f"cleaned text from {filename}")
|
107 |
+
|
108 |
+
clean_stopwords_directory(textfile_path, stopwords)
|
109 |
+
#creating dictionary of positive and negative words
|
110 |
+
def create_posneg_dict(masterdict_path, stopwords):
|
111 |
+
poswords = set()
|
112 |
+
negwords = set()
|
113 |
+
#read positivewords file
|
114 |
+
with open(os.path.join(masterdict_path, 'positive-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
|
115 |
+
for line in file:
|
116 |
+
words = line.strip().split()
|
117 |
+
for word in words:
|
118 |
+
if word.lower() not in stopwords:
|
119 |
+
poswords.add(word.lower())
|
120 |
+
#read negativewords file
|
121 |
+
with open(os.path.join(masterdict_path, 'negative-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
|
122 |
+
for line in file:
|
123 |
+
words = line.strip().split()
|
124 |
+
for word in words:
|
125 |
+
if word.lower() not in stopwords:
|
126 |
+
negwords.add(word.lower())
|
127 |
+
return poswords, negwords
|
128 |
+
|
129 |
+
positivewords, negativewords = create_posneg_dict(masterdict_path, stopwords)
|
130 |
+
#print(positivewords)
|
131 |
+
#print(negativewords)
|
132 |
+
return stopwords, positivewords, negativewords
|
133 |
+
|
134 |
+
#cleaning/transforming data
|
135 |
+
stopwords, positivewords, negativewords = transform(df)
|
136 |
+
|
137 |
+
#load data
|
138 |
+
result_df = pd.DataFrame()
|
139 |
+
def loadoutput(folderpath, result_df):
|
140 |
+
exceloutfilepath = f"{folderpath}Output.xlsx"
|
141 |
+
result_df.to_excel(exceloutfilepath, index=False)
|
142 |
+
print(f"output file saved to {exceloutfilepath}")
|
143 |
+
print(f"analysis time: {int((time.time() - starttime)//3600)} hours {int(((time.time() - starttime)%3600)//60)} minutes {int((time.time() - starttime)%60)} seconds")
|
144 |
+
|
145 |
+
#process text files
|
146 |
+
def runengine(df, stopwords, files_subset, dflist):
|
147 |
+
#sentimental analysis
|
148 |
+
#calculating variables
|
149 |
+
def calculate_positivescore(words, positivewords):
|
150 |
+
positivescore = sum(1 for word in words if word.lower() in positivewords)
|
151 |
+
return positivescore
|
152 |
+
|
153 |
+
def calculate_negativescore(words, negativewords):
|
154 |
+
negativescore = (sum(-1 for word in words if word.lower() in negativewords))*(-1)
|
155 |
+
return negativescore
|
156 |
+
|
157 |
+
#analysis of readability
|
158 |
+
def calc_readibility(words, sentences):
|
159 |
+
#calculate average length of sentences
|
160 |
+
avg_sentencelen = len(words)/len(sentences) if sentences else 0
|
161 |
+
#calculate % of complex words
|
162 |
+
complexwords = [word for word in words if syllable_count(word)>2]
|
163 |
+
percent_complexwords = len(complexwords)/len(words)*100 if words else 0
|
164 |
+
#calculate fog index
|
165 |
+
fog_index = 0.4*(avg_sentencelen + percent_complexwords)
|
166 |
+
return avg_sentencelen, percent_complexwords, fog_index
|
167 |
+
|
168 |
+
#average words per text
|
169 |
+
def avg_wordspersentence(words, sentences):
|
170 |
+
if len(sentences) > 0:
|
171 |
+
averagewords = len(words)/len(sentences)
|
172 |
+
return averagewords
|
173 |
+
else: return 0
|
174 |
+
|
175 |
+
#complex word count
|
176 |
+
def syllable_count(word):
|
177 |
+
d = cmudict.dict()
|
178 |
+
if word.lower() in d:
|
179 |
+
return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]][0]
|
180 |
+
else:
|
181 |
+
return 0
|
182 |
+
def complexwords_count(words):
|
183 |
+
complexwords = [word for word in words if syllable_count(word)>2]
|
184 |
+
return len(complexwords)
|
185 |
+
|
186 |
+
#clean words count
|
187 |
+
def cleanwords_count(words, stopwords):
|
188 |
+
punctuations = set(string.punctuation)
|
189 |
+
cleaned_words = [word.lower() for word in words if word.lower() not in stopwords and word.lower() not in punctuations]
|
190 |
+
return len(cleaned_words)
|
191 |
+
|
192 |
+
#syllable count per word
|
193 |
+
#vowel syllable count per word
|
194 |
+
def vowel_syllable(word):
|
195 |
+
vowels = 'aeiouy'
|
196 |
+
count = 0
|
197 |
+
endings = 'es', 'ed', 'e'
|
198 |
+
#exceptions for word with endings
|
199 |
+
word = word.lower().strip()
|
200 |
+
if word.endswith(endings):
|
201 |
+
word = word[:-2]#subtract 2 characters from ending of word
|
202 |
+
elif word.emdswith('le'):
|
203 |
+
word = word[:-2]
|
204 |
+
endings = ''
|
205 |
+
elif word.endswith('ing'):
|
206 |
+
word = word[:-3]#subtract 3 characters from ending of word
|
207 |
+
endings = ''
|
208 |
+
#counting vowels in word
|
209 |
+
if len(word)<=3:
|
210 |
+
return 1
|
211 |
+
for index, letter in enumerate(word):
|
212 |
+
if letter in vowels and (index ==0 or word[index -1] not in vowels):
|
213 |
+
count +=1
|
214 |
+
#handling y as vowel at end of word
|
215 |
+
if word.endswith('y') and word[-2] not in vowels:
|
216 |
+
count +=1
|
217 |
+
return count
|
218 |
+
#per text
|
219 |
+
def vowel_syllable_perword(words):
|
220 |
+
total_syllables = sum(syllable_count(word) for word in words)
|
221 |
+
return total_syllables
|
222 |
+
|
223 |
+
#personal pronouns
|
224 |
+
def count_pronouns(text):
|
225 |
+
pattern = r'\b(?:I|we|my|ours|us)\b'#define regex pattern for matching pronouns
|
226 |
+
#find all matches
|
227 |
+
matches = re.findall(pattern, text, flags=re.IGNORECASE)
|
228 |
+
#excluse 'US' when reffering to USA
|
229 |
+
matches_fin = [matches for match in matches if match.lower() != 'us']
|
230 |
+
countpron = len(matches_fin)#count of pronouns
|
231 |
+
return countpron
|
232 |
+
|
233 |
+
#average word length
|
234 |
+
def calc_avg_wordlength(words):
|
235 |
+
total_chars = sum(len(word) for word in words)#calculate total charactes in text
|
236 |
+
total_words = len(words)
|
237 |
+
if total_words != 0:
|
238 |
+
avg_wordlength = total_chars/total_words
|
239 |
+
else: avg_wordlength = 0
|
240 |
+
return avg_wordlength
|
241 |
+
|
242 |
+
def appendtodf(url_idkey, calc_values, process_df):
|
243 |
+
rowindex = df[df['URL_ID'] == url_idkey].index #get index of row where url_id = url_idkey
|
244 |
+
if not rowindex.empty:
|
245 |
+
idx_toupdate = rowindex[0]
|
246 |
+
# Create a new row with the columns from the original DataFrame df
|
247 |
+
new_row = pd.DataFrame(columns=process_df.columns)
|
248 |
+
# Assign the existing values from df to the new row at the corresponding index
|
249 |
+
new_row.loc[0, process_df.columns[:2]] = df.loc[idx_toupdate, ['URL_ID', 'URL']]
|
250 |
+
# Update the new row with the calculated values
|
251 |
+
for col, value in calc_values.items():
|
252 |
+
new_row[col] = value
|
253 |
+
# Add the new row to the process_df
|
254 |
+
process_df = process_df._append(new_row, ignore_index=True)
|
255 |
+
print(f"Result updated for {url_idkey}")
|
256 |
+
else:
|
257 |
+
print(f"!not found {url_idkey}")
|
258 |
+
return process_df
|
259 |
+
|
260 |
+
#process data/ processing each file
|
261 |
+
process_df = pd.DataFrame(columns=df.columns)
|
262 |
+
for filename in files_subset:
|
263 |
+
filepath = os.path.join(textfile_path, filename)
|
264 |
+
#to update values for each URL_ID
|
265 |
+
url_idkey = re.search(r'blackassign\d{4}', filepath).group()
|
266 |
+
if os.path.isfile(filepath):
|
267 |
+
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
|
268 |
+
text = file.read()
|
269 |
+
#tokenize text
|
270 |
+
words = word_tokenize(text)
|
271 |
+
sentences = sent_tokenize(text)
|
272 |
+
totalwords = len(words)
|
273 |
+
|
274 |
+
#calculate positive score
|
275 |
+
positive_score = calculate_positivescore(words, positivewords)
|
276 |
+
print(f"{filename} positive socre: {positive_score}")
|
277 |
+
|
278 |
+
#calculate negative score
|
279 |
+
negative_score = calculate_negativescore(words, negativewords)
|
280 |
+
print(f"{filename} negative socre: {negative_score}")
|
281 |
+
|
282 |
+
#calculate polarity score
|
283 |
+
polarity_score = (positive_score - negative_score)/((positive_score+negative_score)+0.000001)
|
284 |
+
print(f"{filename} polarity socre: {polarity_score}")
|
285 |
+
|
286 |
+
#calculate subjective score
|
287 |
+
subjectivity_score = (positive_score+negative_score)/((totalwords)+0.000001)
|
288 |
+
print(f"{filename} subjectivity socre: {subjectivity_score}")
|
289 |
+
|
290 |
+
#readibility analysis
|
291 |
+
avg_sentencelen, percent_complexwords, fog_index = calc_readibility(words, sentences)
|
292 |
+
print(f"{filename} avg sentencelength: {avg_sentencelen}")
|
293 |
+
#load(df, "AVG SENTENCE LENGTH",avg_sentencelen, url_idkey)
|
294 |
+
print(f"{filename} percentage of complex words: {percent_complexwords}")
|
295 |
+
#load(df, "PERCENTAGE OF COMPLEX WORDS",percent_complexwords, url_idkey)
|
296 |
+
print(f"{filename} Fog Index: {fog_index}")
|
297 |
+
|
298 |
+
#average number of words per sentence
|
299 |
+
avg_wordper_sentence = avg_wordspersentence(words, sentences)
|
300 |
+
print(f"{filename} avg words per sentence: {avg_wordper_sentence}")
|
301 |
+
|
302 |
+
#complex word count
|
303 |
+
complexword_count = complexwords_count(words)
|
304 |
+
print(f"{filename} complex words count: {complexword_count}")
|
305 |
+
|
306 |
+
#word count
|
307 |
+
cleanword_count = cleanwords_count(words, stopwords)
|
308 |
+
print(f"{filename} clean words count: {cleanword_count}")
|
309 |
+
|
310 |
+
#syllable count per word
|
311 |
+
syllablecount_perword = vowel_syllable_perword(words)
|
312 |
+
print(f"{filename} syllable count per word: {syllablecount_perword}")
|
313 |
+
|
314 |
+
#personal pronouns
|
315 |
+
pronouns_count = count_pronouns(text)
|
316 |
+
print(f"{filename} personal pronouns count: {pronouns_count}")
|
317 |
+
|
318 |
+
#avg word length
|
319 |
+
avg_wordlength = calc_avg_wordlength(words)
|
320 |
+
print(f"{filename} avg word length: {avg_wordlength}")
|
321 |
+
else: print(f"df not updated for {filename}!")
|
322 |
+
|
323 |
+
calc_values = {
|
324 |
+
"POSITIVE SCORE": positive_score,
|
325 |
+
"NEGATIVE SCORE": negative_score,
|
326 |
+
"POLARITY SCORE": polarity_score,
|
327 |
+
"SUBJECTIVITY SCORE": subjectivity_score,
|
328 |
+
"AVG SENTENCE LENGTH": avg_sentencelen,
|
329 |
+
"PERCENTAGE OF COMPLEX WORDS": percent_complexwords,
|
330 |
+
"FOG INDEX": fog_index,
|
331 |
+
"AVG NUMBER OF WORDS PER SENTENCE": avg_wordper_sentence,
|
332 |
+
"COMPLEX WORD COUNT": complexword_count,
|
333 |
+
"WORD COUNT": cleanword_count,
|
334 |
+
"SYLLABLE PER WORD": syllablecount_perword,
|
335 |
+
"PERSONAL PRONOUNS": pronouns_count,
|
336 |
+
"AVG WORD LENGTH": avg_wordlength
|
337 |
+
}
|
338 |
+
try:
|
339 |
+
process_df = appendtodf(url_idkey,calc_values, process_df)
|
340 |
+
except Exception as e:
|
341 |
+
print(e)
|
342 |
+
print(process_df)
|
343 |
+
dflist.append(process_df)
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
#runengine(df, stopwords, files_subset, dflist)
|
348 |
+
if __name__ == '__main__':
|
349 |
+
starttime = time.time()
|
350 |
+
files_toprocess = os.listdir(textfile_path)
|
351 |
+
#files_toprocess = [r'blackassign0049.txt', r'blackassign0099.txt', r'blackassign0100.txt']
|
352 |
+
num_processes = multiprocessing.cpu_count()
|
353 |
+
print(str(num_processes)+ " CPUs")
|
354 |
+
files_perprocess = len(files_toprocess) // num_processes
|
355 |
+
print(files_perprocess)
|
356 |
+
|
357 |
+
processes = []
|
358 |
+
# Create a Manager object to share a list among processes
|
359 |
+
manager = multiprocessing.Manager()
|
360 |
+
dflist = manager.list()
|
361 |
+
|
362 |
+
for i in range(num_processes):
|
363 |
+
try:
|
364 |
+
start = i*files_perprocess
|
365 |
+
end = (i+1)*files_perprocess if i != num_processes-1 else len(files_toprocess)
|
366 |
+
files_subset = files_toprocess[start:end]
|
367 |
+
|
368 |
+
p = multiprocessing.Process(target=runengine, args =(df, stopwords, files_subset, dflist))
|
369 |
+
processes.append(p)
|
370 |
+
p.start()
|
371 |
+
except Exception as e:
|
372 |
+
print(e)
|
373 |
+
|
374 |
+
print("waiting for all processes to end...")
|
375 |
+
for i in processes:
|
376 |
+
print(i)
|
377 |
+
for process in processes:
|
378 |
+
try:
|
379 |
+
process.join()
|
380 |
+
except Exception as e:
|
381 |
+
print(e)
|
382 |
+
for i in processes:
|
383 |
+
print(i)
|
384 |
+
|
385 |
+
print(str(len(dflist))+" result dataframes obtained.")
|
386 |
+
result_df = pd.concat(dflist, ignore_index=True)
|
387 |
+
result_df = result_df.sort_values(by='URL_ID')
|
388 |
+
print(result_df)
|
389 |
+
|
390 |
+
loadoutput(folderpath, result_df)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.1.4
|
2 |
+
requests==2.31.0
|
3 |
+
beautifulsoup4==4.12.2
|
4 |
+
nltk==3.8.1
|