--- language: German tags: - text-classification - pytorch - nli - de pipeline_tag: zero-shot-classification widget: - text: "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss." candidate_labels: "Computer, Handy, Tablet, dringend, nicht dringend" hypothesis_template: "In diesem Satz geht es um das Thema {}." --- # SVALabs - Gbert Large Zeroshot Nli In this repository, we present our german zeroshot model. This model was trained on the basis of the German BERT large model from [deepset.ai](https://huggingface.co/deepset/gbert-large) and finetuned for natural language inference based on 847.862 machine-translated nli sentence pairs, using the [mnli](https://huggingface.co/datasets/multi_nli), [anli](https://huggingface.co/datasets/anli) and [snli](https://huggingface.co/datasets/snli) datasets. For this purpose, we translated the sentence pairs in these dataset to German. ### Model Details | | Description or Link | |---|---| |**Base model** | [```gbert-large```](https://huggingface.co/deepset/gbert-large) | |**Finetuning task**| Text Pair Classification / Natural Language Inference | |**Source dataset**| [```mnli```](https://huggingface.co/datasets/multi_nli) ; [```anli```](https://huggingface.co/datasets/anli) ; [```snli```](https://huggingface.co/datasets/snli) | ### Performance We evaluated our model for the nli task using the TEST set of the German part of the [xnli](https://huggingface.co/datasets/xnli dataset). TEST-Set Accuracy: 86% ## Zeroshot Text Classification Task Benchmark We further tested our model for a zeroshot text classification task using a part of the [10kGNAD Dataset](https://tblock.github.io/10kGNAD/). Specifically, we used all articles that were labeled "Kultur", "Sport", "Web", "Wirtschaft" und "Wissenschaft". The next table shows the results as well as a comparison with other German language zeroshot options performing the same task: | Model | NDCG@1 | NDCG@5 | NDCG@10 | Recall@1 | Recall@5 | Recall@10 | |:-------------------:|:------:|:------:|:-------:|:--------:|:--------:|:---------:| | BM25 | 0.1463 | 0.3451 | 0.4097 | 0.1463 | 0.5424 | 0.7415 | | BM25(Top 100) +Ours | 0.6410 | 0.7885 | 0.7943 | 0.6410 | 0.8576 | 0.9024 | ## Other Applications DESCRIPTION GOES HERE: Satz 1: "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss" Satz 2: "Ich hab ein kleines Problem mit meinem Macbook, und auch wenn die Reparatur nicht eilt, würde ich es gerne addressieren." Label: ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"] EMOTION EXAMPLE: "Ich bin entäuscht, dass ich kein Ticket für das Konzert meiner Lieblingsband bekommen habe." label: "Furcht, Freude, Wut , Überraschung, Traurigkeit, Ekel, Verachtung" - text: "Wer ist die reichste Person der Welt" candidate_labels: "Frage, Schlagwörter" hypothesis_template: "Hierbei handelt es sich um {}." """""""" ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Dehnes/zeroshot_gbert") sequence = "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss" candidate_labels = ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"] #hypothesis_template = "In diesem Satz geht es um das Thema {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented #hypothesis_template = "Dieser Satz drückt ein Gefühl von {} aus." classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template) ```