File size: 2,055 Bytes
0476f86 ea948d1 0476f86 30b6773 f8af65b 85d3e40 92a4bf5 baacc1b 6d206fc 4be6add 8183e43 ea948d1 0476f86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: svenbl80/roberta-base-finetuned-new-mnli-run-9
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# svenbl80/roberta-base-finetuned-new-mnli-run-9
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0252
- Validation Loss: 0.7593
- Train Accuracy: 0.8627
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4595 | 0.4097 | 0.8456 | 0 |
| 0.3288 | 0.3983 | 0.8531 | 1 |
| 0.2471 | 0.4441 | 0.8556 | 2 |
| 0.1807 | 0.4561 | 0.8596 | 3 |
| 0.1303 | 0.5280 | 0.8598 | 4 |
| 0.0932 | 0.5839 | 0.8555 | 5 |
| 0.0672 | 0.6134 | 0.8604 | 6 |
| 0.0484 | 0.6650 | 0.8589 | 7 |
| 0.0348 | 0.7089 | 0.8597 | 8 |
| 0.0252 | 0.7593 | 0.8627 | 9 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.9.1
- Datasets 2.15.0
- Tokenizers 0.13.3
|