File size: 2,055 Bytes
0476f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea948d1
 
 
 
0476f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b6773
f8af65b
85d3e40
92a4bf5
baacc1b
6d206fc
4be6add
8183e43
ea948d1
0476f86
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: svenbl80/roberta-base-finetuned-new-mnli-run-9
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# svenbl80/roberta-base-finetuned-new-mnli-run-9

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0252
- Validation Loss: 0.7593
- Train Accuracy: 0.8627
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4595     | 0.4097          | 0.8456         | 0     |
| 0.3288     | 0.3983          | 0.8531         | 1     |
| 0.2471     | 0.4441          | 0.8556         | 2     |
| 0.1807     | 0.4561          | 0.8596         | 3     |
| 0.1303     | 0.5280          | 0.8598         | 4     |
| 0.0932     | 0.5839          | 0.8555         | 5     |
| 0.0672     | 0.6134          | 0.8604         | 6     |
| 0.0484     | 0.6650          | 0.8589         | 7     |
| 0.0348     | 0.7089          | 0.8597         | 8     |
| 0.0252     | 0.7593          | 0.8627         | 9     |


### Framework versions

- Transformers 4.28.0
- TensorFlow 2.9.1
- Datasets 2.15.0
- Tokenizers 0.13.3