File size: 1,848 Bytes
328b804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1b7342
 
 
 
328b804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b573d20
328b804
 
 
 
 
 
b573d20
403728c
ed8278f
aacdfa8
8dd1351
b1b7342
328b804
 
 
 
 
b1326b5
328b804
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: svenbl80/xlnet-base-cased-finetuned-mnli
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# svenbl80/xlnet-base-cased-finetuned-mnli

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0857
- Validation Loss: 0.5733
- Train Accuracy: 0.8684
- Epoch: 5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4828     | 0.4066          | 0.8426         | 0     |
| 0.3364     | 0.3842          | 0.8598         | 1     |
| 0.2419     | 0.3913          | 0.8672         | 2     |
| 0.1713     | 0.4653          | 0.8624         | 3     |
| 0.1212     | 0.5090          | 0.8625         | 4     |
| 0.0857     | 0.5733          | 0.8684         | 5     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.9.1
- Datasets 2.15.0
- Tokenizers 0.15.0