--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7277 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8325 | 1.0 | 225 | 1.6828 | 0.51 | | 1.1105 | 2.0 | 450 | 1.1369 | 0.66 | | 0.6095 | 3.0 | 675 | 0.8092 | 0.77 | | 0.2526 | 4.0 | 900 | 0.6534 | 0.81 | | 0.3619 | 5.0 | 1125 | 0.6683 | 0.78 | | 0.0294 | 6.0 | 1350 | 0.5738 | 0.83 | | 0.429 | 7.0 | 1575 | 0.5983 | 0.84 | | 0.2307 | 8.0 | 1800 | 0.7582 | 0.85 | | 0.008 | 9.0 | 2025 | 0.7387 | 0.83 | | 0.0078 | 10.0 | 2250 | 0.7277 | 0.82 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3