svitek commited on
Commit
6bcb9e9
·
verified ·
1 Parent(s): b2949b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,3 +1,68 @@
1
  ---
2
  license: agpl-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: agpl-3.0
3
  ---
4
+ ## Model Details
5
+
6
+ ### Model Description
7
+
8
+ <!-- Provide a longer summary of what this model is. -->
9
+
10
+
11
+
12
+ - **Developed by:** Warsaw Student Hacking Team
13
+ - **Model type:** Multi
14
+ - **Language(s) (NLP):** Pytorch
15
+ - **License:** agpl-3.0
16
+ <!--
17
+ ### Model Sources [optional]
18
+
19
+ Provide the basic links for the model.
20
+
21
+ - **Repository:** [More Information Needed]
22
+ - **Paper [optional]:** [More Information Needed]
23
+ - **Demo [optional]:** [More Information Needed]
24
+ -->
25
+ ## Uses
26
+
27
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
28
+ Prediction of 10 PM10 emissions in Berlin based on traffic intensity measured by 80 stations across city (more about stations here -> https://api.viz.berlin.de/daten/verkehrsdetektion).
29
+ Emissions train data extracted from here -> https://www.umweltbundesamt.de/en/data/air/air-data/stations. Model uses traffic station's num_vehicles, quality, hour, month concatenated in this order.
30
+
31
+
32
+ ## Used traffic monitor stations detid_15:
33
+ [100101010073424, 100101010075343, 100101010075444, 100101010075545,
34
+ 100101010073323, 100101010077161, 100101010072717, 100101010072616,
35
+ 100101010035331, 100101010043617, 100101010043516, 100101010085750,
36
+ 100101010055741, 100101010055640, 100101010079585, 100101010066047,
37
+ 100101010085649, 100101010069885, 100101010069986, 100101010002086,
38
+ 100101010053923, 100101010029570, 100101010054024, 100101010029469,
39
+ 100101010059983, 100101010002692, 100101010074838, 100101010074939,
40
+ 100101010061603, 100101010061704, 100101010018355, 100101010018456,
41
+ 100101010067259, 100101010017547, 100101010017648, 100101010067158,
42
+ 100101010042708, 100101010042809, 100101010076656, 100101010076555,
43
+ 100101010077060, 100101010076959, 100101010045132, 100101010045233,
44
+ 100101010062512, 100101010062411, 100101010062613, 100101010062714,
45
+ 100101010060084, 100101010085952, 100101010040179, 100101010040078,
46
+ 100101010073525, 100101010073626, 100101010002288, 100101010083427,
47
+ 100101010083528, 100101010053014, 100101010027348, 100101010013709,
48
+ 100101010023914, 100101010083629, 100101010013810, 100101010024116,
49
+ 100101010002389, 100101010024217, 100101010024419, 100101010053115,
50
+ 100101010024318, 100101010035230, 100101010079787, 100101010027247,
51
+ 100101010079080, 100101010078979, 100101010074232, 100101010074131,
52
+ 100101010072212, 100101010072111, 100101010023510, 100101010023611]
53
+
54
+ ## Used PM10 monitor stations codes (for model training):
55
+ DEBE032, DEBE061, DEBE051, DEBE056, DEBE065, DEBE069, DEBE010, DEBE034, DEBE063, DEBE068
56
+
57
+
58
+ ## Evaluation
59
+
60
+ <!-- This section describes the evaluation protocols and provides the results. -->
61
+
62
+ Evaluated on randomly choosen subset of prepared data.
63
+
64
+ #### Metrics
65
+
66
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
67
+ Mean absolute error used in validation.
68
+