svjack's picture
Upload folder using huggingface_hub
bce3e7c verified
raw
history blame
23.6 kB
import argparse
from datetime import datetime
from pathlib import Path
import random
import sys
import os
import time
from typing import Optional, Union
import numpy as np
import torch
import torchvision
import accelerate
from diffusers.utils.torch_utils import randn_tensor
from transformers.models.llama import LlamaModel
from tqdm import tqdm
import av
from einops import rearrange
from safetensors.torch import load_file
from hunyuan_model import vae
from hunyuan_model.text_encoder import TextEncoder
from hunyuan_model.text_encoder import PROMPT_TEMPLATE
from hunyuan_model.vae import load_vae
from hunyuan_model.models import load_transformer, get_rotary_pos_embed
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from networks import lora
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def clean_memory_on_device(device):
if device.type == "cuda":
torch.cuda.empty_cache()
elif device.type == "cpu":
pass
elif device.type == "mps": # not tested
torch.mps.empty_cache()
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
"""save videos by video tensor
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
Args:
videos (torch.Tensor): video tensor predicted by the model
path (str): path to save video
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
n_rows (int, optional): Defaults to 1.
fps (int, optional): video save fps. Defaults to 8.
"""
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
# # save video with av
# container = av.open(path, "w")
# stream = container.add_stream("libx264", rate=fps)
# for x in outputs:
# frame = av.VideoFrame.from_ndarray(x, format="rgb24")
# packet = stream.encode(frame)
# container.mux(packet)
# packet = stream.encode(None)
# container.mux(packet)
# container.close()
height, width, _ = outputs[0].shape
# create output container
container = av.open(path, mode="w")
# create video stream
codec = "libx264"
pixel_format = "yuv420p"
stream = container.add_stream(codec, rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = pixel_format
stream.bit_rate = 4000000 # 4Mbit/s
for frame_array in outputs:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
packets = stream.encode(frame)
for packet in packets:
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
container.close()
# region Encoding prompt
def encode_prompt(prompt: Union[str, list[str]], device: torch.device, num_videos_per_prompt: int, text_encoder: TextEncoder):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of videos that should be generated per prompt
text_encoder (TextEncoder):
text encoder to be used for encoding the prompt
"""
# LoRA and Textual Inversion are not supported in this script
# negative prompt and prompt embedding are not supported in this script
# clip_skip is not supported in this script because it is not used in the original script
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type, device=device)
prompt_embeds = prompt_outputs.hidden_state
attention_mask = prompt_outputs.attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(device)
bs_embed, seq_len = attention_mask.shape
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len)
prompt_embeds_dtype = text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
if prompt_embeds.ndim == 2:
bs_embed, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
else:
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
return prompt_embeds, attention_mask
def encode_input_prompt(prompt, args, device, fp8_llm=False, accelerator=None):
# constants
prompt_template_video = "dit-llm-encode-video"
prompt_template = "dit-llm-encode"
text_encoder_dtype = torch.float16
text_encoder_type = "llm"
text_len = 256
hidden_state_skip_layer = 2
apply_final_norm = False
reproduce = False
text_encoder_2_type = "clipL"
text_len_2 = 77
num_videos = 1
# if args.prompt_template_video is not None:
# crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0)
# elif args.prompt_template is not None:
# crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
# else:
# crop_start = 0
crop_start = PROMPT_TEMPLATE[prompt_template_video].get("crop_start", 0)
max_length = text_len + crop_start
# prompt_template
prompt_template = PROMPT_TEMPLATE[prompt_template]
# prompt_template_video
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] # if args.prompt_template_video is not None else None
# load text encoders
logger.info(f"loading text encoder: {args.text_encoder1}")
text_encoder = TextEncoder(
text_encoder_type=text_encoder_type,
max_length=max_length,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=args.text_encoder1,
tokenizer_type=text_encoder_type,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=hidden_state_skip_layer,
apply_final_norm=apply_final_norm,
reproduce=reproduce,
)
text_encoder.eval()
if fp8_llm:
org_dtype = text_encoder.dtype
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
text_encoder.to(device=device, dtype=torch.float8_e4m3fn)
# prepare LLM for fp8
def prepare_fp8(llama_model: LlamaModel, target_dtype):
def forward_hook(module):
def forward(hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
return module.weight.to(input_dtype) * hidden_states.to(input_dtype)
return forward
for module in llama_model.modules():
if module.__class__.__name__ in ["Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["LlamaRMSNorm"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
prepare_fp8(text_encoder.model, org_dtype)
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = TextEncoder(
text_encoder_type=text_encoder_2_type,
max_length=text_len_2,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=args.text_encoder2,
tokenizer_type=text_encoder_2_type,
reproduce=reproduce,
)
text_encoder_2.eval()
# encode prompt
logger.info(f"Encoding prompt with text encoder 1")
text_encoder.to(device=device)
if fp8_llm:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder)
else:
prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder)
text_encoder = None
clean_memory_on_device(device)
logger.info(f"Encoding prompt with text encoder 2")
text_encoder_2.to(device=device)
prompt_embeds_2, prompt_mask_2 = encode_prompt(prompt, device, num_videos, text_encoder_2)
prompt_embeds = prompt_embeds.to("cpu")
prompt_mask = prompt_mask.to("cpu")
prompt_embeds_2 = prompt_embeds_2.to("cpu")
prompt_mask_2 = prompt_mask_2.to("cpu")
text_encoder_2 = None
clean_memory_on_device(device)
return prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2
# endregion
def decode_latents(args, latents, device):
vae_dtype = torch.float16
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
vae.eval()
# vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
# set chunk_size to CausalConv3d recursively
chunk_size = args.vae_chunk_size
if chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(chunk_size)
logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d")
expand_temporal_dim = False
if len(latents.shape) == 4:
latents = latents.unsqueeze(2)
expand_temporal_dim = True
elif len(latents.shape) == 5:
pass
else:
raise ValueError(f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.")
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = latents / vae.config.scaling_factor + vae.config.shift_factor
else:
latents = latents / vae.config.scaling_factor
latents = latents.to(device=device, dtype=vae.dtype)
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
# elif args.vae_tiling:
else:
vae.enable_spatial_tiling(True)
with torch.no_grad():
image = vae.decode(latents, return_dict=False)[0]
if expand_temporal_dim or image.shape[2] == 1:
image = image.squeeze(2)
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().float()
return image
def parse_args():
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory")
parser.add_argument("--vae", type=str, required=True, help="VAE checkpoint path or directory")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
# LoRA
parser.add_argument("--lora_weight", type=str, required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, default=1.0, help="LoRA multiplier")
parser.add_argument("--prompt", type=str, required=True, help="prompt for generation")
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size")
parser.add_argument("--video_length", type=int, default=129, help="video length")
parser.add_argument("--infer_steps", type=int, default=50, help="number of inference steps")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
parser.add_argument("--embedded_cfg_scale", type=float, default=6.0, help="Embeded classifier free guidance scale.")
# Flow Matching
parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.")
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode", type=str, default="torch", choices=["flash", "torch", "sageattn", "sdpa"], help="attention mode"
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--blocks_to_swap", type=int, default=None, help="number of blocks to swap in the model")
parser.add_argument("--img_in_txt_in_offloading", action="store_true", help="offload img_in and txt_in to cpu")
parser.add_argument("--output_type", type=str, default="video", help="output type: video, latent or both")
parser.add_argument("--latent_path", type=str, default=None, help="path to latent for decode. no inference")
args = parser.parse_args()
assert args.latent_path is None or args.output_type == "video", "latent-path is only supported with output-type=video"
# update dit_weight based on model_base if not exists
return args
def check_inputs(args):
height = args.video_size[0]
width = args.video_size[1]
video_length = args.video_length
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_length
def main():
args = parse_args()
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
dit_dtype = torch.bfloat16
dit_weight_dtype = torch.float8_e4m3fn if args.fp8 else dit_dtype
logger.info(f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")
if args.latent_path is not None:
latents = torch.load(args.latent_path, map_location="cpu")
logger.info(f"Loaded latent from {args.latent_path}. Shape: {latents.shape}")
latents = latents.unsqueeze(0)
seeds = [0] # dummy seed
else:
# prepare accelerator
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)
# load prompt
prompt = args.prompt # TODO load prompts from file
assert prompt is not None, "prompt is required"
# check inputs: may be height, width, video_length etc will be changed for each generation in future
height, width, video_length = check_inputs(args)
# encode prompt with LLM and Text Encoder
logger.info(f"Encoding prompt: {prompt}")
prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 = encode_input_prompt(
prompt, args, device, args.fp8_llm, accelerator
)
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
loading_device = "cpu" if blocks_to_swap > 0 else device
logger.info(f"Loading DiT model from {args.dit}")
if args.attn_mode == "sdpa":
args.attn_mode = "torch"
transformer = load_transformer(args.dit, args.attn_mode, loading_device, dit_dtype)
transformer.eval()
# load LoRA weights
if args.lora_weight is not None:
logger.info(f"Loading LoRA weights from {args.lora_weight}")
weights_sd = load_file(args.lora_weight)
network = lora.create_network_from_weights_hunyuan_video(
args.lora_multiplier, weights_sd, unet=transformer, for_inference=True
)
logger.info("Merging LoRA weights to DiT model")
network.merge_to(None, transformer, weights_sd, device=device)
logger.info("LoRA weights loaded")
if blocks_to_swap > 0:
logger.info(f"Casting model to {dit_weight_dtype}")
transformer.to(dtype=dit_weight_dtype)
logger.info(f"Enable swap {blocks_to_swap} blocks to CPU from device: {device}")
transformer.enable_block_swap(blocks_to_swap, device, supports_backward=False)
transformer.move_to_device_except_swap_blocks(device)
transformer.prepare_block_swap_before_forward()
else:
logger.info(f"Moving and casting model to {device} and {dit_weight_dtype}")
transformer.to(device=device, dtype=dit_weight_dtype)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
# load scheduler
logger.info(f"Loading scheduler")
scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift, reverse=True, solver="euler")
# Prepare timesteps
num_inference_steps = args.infer_steps
scheduler.set_timesteps(num_inference_steps, device=device) # n_tokens is not used in FlowMatchDiscreteScheduler
timesteps = scheduler.timesteps
# Prepare generator
num_videos_per_prompt = 1 # args.num_videos
seed = args.seed
if seed is None:
seeds = [random.randint(0, 1_000_000) for _ in range(num_videos_per_prompt)]
elif isinstance(seed, int):
seeds = [seed + i for i in range(num_videos_per_prompt)]
else:
raise ValueError(f"Seed must be an integer or None, got {seed}.")
generator = [torch.Generator(device).manual_seed(seed) for seed in seeds]
# Prepare latents
num_channels_latents = 16 # transformer.config.in_channels
vae_scale_factor = 2 ** (4 - 1) # len(self.vae.config.block_out_channels) == 4
vae_ver = vae.VAE_VER
if "884" in vae_ver:
latent_video_length = (video_length - 1) // 4 + 1
elif "888" in vae_ver:
latent_video_length = (video_length - 1) // 8 + 1
else:
latent_video_length = video_length
shape = (
num_videos_per_prompt,
num_channels_latents,
latent_video_length,
height // vae_scale_factor,
width // vae_scale_factor,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dit_dtype)
# FlowMatchDiscreteScheduler does not have init_noise_sigma
# Denoising loop
embedded_guidance_scale = args.embedded_cfg_scale
if embedded_guidance_scale is not None:
guidance_expand = torch.tensor([embedded_guidance_scale * 1000.0] * latents.shape[0], dtype=torch.float32, device="cpu")
guidance_expand = guidance_expand.to(device=device, dtype=dit_dtype)
else:
guidance_expand = None
freqs_cos, freqs_sin = get_rotary_pos_embed(vae.VAE_VER, transformer, video_length, height, width)
# n_tokens = freqs_cos.shape[0]
# move and cast all inputs to the correct device and dtype
prompt_embeds = prompt_embeds.to(device=device, dtype=dit_dtype)
prompt_mask = prompt_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dit_dtype)
prompt_mask_2 = prompt_mask_2.to(device=device)
freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype)
freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype)
num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
# with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as p:
with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latents = scheduler.scale_model_input(latents, t)
# predict the noise residual
with torch.no_grad(), accelerator.autocast():
noise_pred = transformer( # For an input image (129, 192, 336) (1, 256, 256)
latents, # [1, 16, 33, 24, 42]
t.repeat(latents.shape[0]).to(device=device, dtype=dit_dtype), # [1]
text_states=prompt_embeds, # [1, 256, 4096]
text_mask=prompt_mask, # [1, 256]
text_states_2=prompt_embeds_2, # [1, 768]
freqs_cos=freqs_cos, # [seqlen, head_dim]
freqs_sin=freqs_sin, # [seqlen, head_dim]
guidance=guidance_expand,
return_dict=True,
)["x"]
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# update progress bar
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
if progress_bar is not None:
progress_bar.update()
# print(p.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1))
# print(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))
latents = latents.detach().cpu()
transformer = None
clean_memory_on_device(device)
# Save samples
output_type = args.output_type
save_path = args.save_path # if args.save_path_suffix == "" else f"{args.save_path}_{args.save_path_suffix}"
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
if output_type == "latent" or output_type == "both":
# save latent
for i, latent in enumerate(latents):
latent_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}_latent.pt"
torch.save(latent, latent_path)
logger.info(f"Latent save to: {latent_path}")
if output_type == "video" or output_type == "both":
# save video
videos = decode_latents(args, latents, device)
for i, sample in enumerate(videos):
sample = sample.unsqueeze(0)
save_path = f"{save_path}/{time_flag}_{seeds[i]}.mp4"
save_videos_grid(sample, save_path, fps=24)
logger.info(f"Sample save to: {save_path}")
logger.info("Done!")
if __name__ == "__main__":
main()