|
""" |
|
wild mixture of |
|
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py |
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py |
|
https://github.com/CompVis/taming-transformers |
|
-- merci |
|
""" |
|
|
|
from functools import partial |
|
from contextlib import contextmanager |
|
import numpy as np |
|
from tqdm import tqdm |
|
from einops import rearrange, repeat |
|
import logging |
|
mainlogger = logging.getLogger('mainlogger') |
|
import random |
|
import torch |
|
import torch.nn as nn |
|
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR |
|
from torchvision.utils import make_grid |
|
import pytorch_lightning as pl |
|
from pytorch_lightning.utilities import rank_zero_only |
|
from utils.utils import instantiate_from_config |
|
from lvdm.ema import LitEma |
|
from lvdm.models.samplers.ddim import DDIMSampler |
|
from lvdm.distributions import DiagonalGaussianDistribution |
|
from lvdm.models.utils_diffusion import make_beta_schedule, rescale_zero_terminal_snr |
|
from lvdm.basics import disabled_train |
|
from lvdm.common import ( |
|
extract_into_tensor, |
|
noise_like, |
|
exists, |
|
default |
|
) |
|
import math |
|
from lvdm.models.autoencoder_dualref import VideoDecoder |
|
__conditioning_keys__ = {'concat': 'c_concat', |
|
'crossattn': 'c_crossattn', |
|
'adm': 'y'} |
|
|
|
class DDPM(pl.LightningModule): |
|
|
|
def __init__(self, |
|
unet_config, |
|
timesteps=1000, |
|
beta_schedule="linear", |
|
loss_type="l2", |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
load_only_unet=False, |
|
monitor=None, |
|
use_ema=True, |
|
first_stage_key="image", |
|
image_size=256, |
|
channels=3, |
|
log_every_t=100, |
|
clip_denoised=True, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
given_betas=None, |
|
original_elbo_weight=0., |
|
v_posterior=0., |
|
l_simple_weight=1., |
|
conditioning_key=None, |
|
parameterization="eps", |
|
scheduler_config=None, |
|
use_positional_encodings=False, |
|
learn_logvar=False, |
|
logvar_init=0., |
|
rescale_betas_zero_snr=False, |
|
): |
|
super().__init__() |
|
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"' |
|
self.parameterization = parameterization |
|
mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") |
|
self.cond_stage_model = None |
|
self.clip_denoised = clip_denoised |
|
self.log_every_t = log_every_t |
|
self.first_stage_key = first_stage_key |
|
self.channels = channels |
|
self.temporal_length = unet_config.params.temporal_length |
|
self.image_size = image_size |
|
if isinstance(self.image_size, int): |
|
self.image_size = [self.image_size, self.image_size] |
|
self.use_positional_encodings = use_positional_encodings |
|
self.model = DiffusionWrapper(unet_config, conditioning_key) |
|
|
|
self.use_ema = use_ema |
|
self.rescale_betas_zero_snr = rescale_betas_zero_snr |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model) |
|
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
self.use_scheduler = scheduler_config is not None |
|
if self.use_scheduler: |
|
self.scheduler_config = scheduler_config |
|
|
|
self.v_posterior = v_posterior |
|
self.original_elbo_weight = original_elbo_weight |
|
self.l_simple_weight = l_simple_weight |
|
|
|
if monitor is not None: |
|
self.monitor = monitor |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) |
|
|
|
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, |
|
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
|
|
|
|
self.given_betas = given_betas |
|
self.beta_schedule = beta_schedule |
|
self.timesteps = timesteps |
|
self.cosine_s = cosine_s |
|
|
|
self.loss_type = loss_type |
|
|
|
self.learn_logvar = learn_logvar |
|
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) |
|
if self.learn_logvar: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=True) |
|
|
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if exists(given_betas): |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, |
|
cosine_s=cosine_s) |
|
if self.rescale_betas_zero_snr: |
|
betas = rescale_zero_terminal_snr(betas) |
|
|
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
|
|
if self.parameterization != 'v': |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
else: |
|
self.register_buffer('sqrt_recip_alphas_cumprod', torch.zeros_like(to_torch(alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.zeros_like(to_torch(alphas_cumprod))) |
|
|
|
|
|
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( |
|
1. - alphas_cumprod) + self.v_posterior * betas |
|
|
|
self.register_buffer('posterior_variance', to_torch(posterior_variance)) |
|
|
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) |
|
self.register_buffer('posterior_mean_coef1', to_torch( |
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) |
|
self.register_buffer('posterior_mean_coef2', to_torch( |
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) |
|
|
|
if self.parameterization == "eps": |
|
lvlb_weights = self.betas ** 2 / ( |
|
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) |
|
elif self.parameterization == "x0": |
|
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) |
|
elif self.parameterization == "v": |
|
lvlb_weights = torch.ones_like(self.betas ** 2 / ( |
|
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))) |
|
else: |
|
raise NotImplementedError("mu not supported") |
|
|
|
lvlb_weights[0] = lvlb_weights[1] |
|
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) |
|
assert not torch.isnan(self.lvlb_weights).all() |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
if context is not None: |
|
mainlogger.info(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
if context is not None: |
|
mainlogger.info(f"{context}: Restored training weights") |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): |
|
sd = torch.load(path, map_location="cpu") |
|
if "state_dict" in list(sd.keys()): |
|
sd = sd["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
mainlogger.info("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( |
|
sd, strict=False) |
|
mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") |
|
if len(missing) > 0: |
|
mainlogger.info(f"Missing Keys: {missing}") |
|
if len(unexpected) > 0: |
|
mainlogger.info(f"Unexpected Keys: {unexpected}") |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) |
|
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise |
|
) |
|
|
|
def predict_start_from_z_and_v(self, x_t, t, v): |
|
|
|
|
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v |
|
) |
|
|
|
def predict_eps_from_z_and_v(self, x_t, t, v): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + |
|
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, clip_denoised: bool): |
|
model_out = self.model(x, t) |
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, shape, return_intermediates=False): |
|
device = self.betas.device |
|
b = shape[0] |
|
img = torch.randn(shape, device=device) |
|
intermediates = [img] |
|
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): |
|
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), |
|
clip_denoised=self.clip_denoised) |
|
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: |
|
intermediates.append(img) |
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, batch_size=16, return_intermediates=False): |
|
image_size = self.image_size |
|
channels = self.channels |
|
return self.p_sample_loop((batch_size, channels, image_size, image_size), |
|
return_intermediates=return_intermediates) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) |
|
|
|
def get_v(self, x, noise, t): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x |
|
) |
|
|
|
def get_loss(self, pred, target, mean=True): |
|
if self.loss_type == 'l1': |
|
loss = (target - pred).abs() |
|
if mean: |
|
loss = loss.mean() |
|
elif self.loss_type == 'l2': |
|
if mean: |
|
loss = torch.nn.functional.mse_loss(target, pred) |
|
else: |
|
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') |
|
else: |
|
raise NotImplementedError("unknown loss type '{loss_type}'") |
|
|
|
return loss |
|
|
|
def p_losses(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
model_out = self.model(x_noisy, t) |
|
|
|
loss_dict = {} |
|
if self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "x0": |
|
target = x_start |
|
elif self.parameterization == "v": |
|
target = self.get_v(x_start, noise, t) |
|
else: |
|
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") |
|
|
|
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) |
|
|
|
log_prefix = 'train' if self.training else 'val' |
|
|
|
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) |
|
loss_simple = loss.mean() * self.l_simple_weight |
|
|
|
loss_vlb = (self.lvlb_weights[t] * loss).mean() |
|
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) |
|
|
|
loss = loss_simple + self.original_elbo_weight * loss_vlb |
|
|
|
loss_dict.update({f'{log_prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
|
|
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() |
|
return self.p_losses(x, t, *args, **kwargs) |
|
|
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
''' |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = rearrange(x, 'b h w c -> b c h w') |
|
''' |
|
x = x.to(memory_format=torch.contiguous_format).float() |
|
return x |
|
|
|
def shared_step(self, batch): |
|
x = self.get_input(batch, self.first_stage_key) |
|
loss, loss_dict = self(x) |
|
return loss, loss_dict |
|
|
|
def training_step(self, batch, batch_idx): |
|
loss, loss_dict = self.shared_step(batch) |
|
|
|
self.log_dict(loss_dict, prog_bar=True, |
|
logger=True, on_step=True, on_epoch=True) |
|
|
|
self.log("global_step", self.global_step, |
|
prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
|
|
if self.use_scheduler: |
|
lr = self.optimizers().param_groups[0]['lr'] |
|
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
_, loss_dict_no_ema = self.shared_step(batch) |
|
with self.ema_scope(): |
|
_, loss_dict_ema = self.shared_step(batch) |
|
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} |
|
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) |
|
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
if self.use_ema: |
|
self.model_ema(self.model) |
|
|
|
def _get_rows_from_list(self, samples): |
|
n_imgs_per_row = len(samples) |
|
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') |
|
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') |
|
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) |
|
return denoise_grid |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.first_stage_key) |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
x = x.to(self.device)[:N] |
|
log["inputs"] = x |
|
|
|
|
|
diffusion_row = list() |
|
x_start = x[:n_row] |
|
|
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(x_start) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
diffusion_row.append(x_noisy) |
|
|
|
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) |
|
|
|
if sample: |
|
|
|
with self.ema_scope("Plotting"): |
|
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) |
|
|
|
log["samples"] = samples |
|
log["denoise_row"] = self._get_rows_from_list(denoise_row) |
|
|
|
if return_keys: |
|
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: |
|
return log |
|
else: |
|
return {key: log[key] for key in return_keys} |
|
return log |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
if self.learn_logvar: |
|
params = params + [self.logvar] |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
return opt |
|
|
|
class LatentDiffusion(DDPM): |
|
"""main class""" |
|
def __init__(self, |
|
first_stage_config, |
|
cond_stage_config, |
|
num_timesteps_cond=None, |
|
cond_stage_key="caption", |
|
cond_stage_trainable=False, |
|
cond_stage_forward=None, |
|
conditioning_key=None, |
|
uncond_prob=0.2, |
|
uncond_type="empty_seq", |
|
scale_factor=1.0, |
|
scale_by_std=False, |
|
encoder_type="2d", |
|
only_model=False, |
|
noise_strength=0, |
|
use_dynamic_rescale=False, |
|
base_scale=0.7, |
|
turning_step=400, |
|
loop_video=False, |
|
fps_condition_type='fs', |
|
perframe_ae=False, |
|
|
|
logdir=None, |
|
rand_cond_frame=False, |
|
en_and_decode_n_samples_a_time=None, |
|
*args, **kwargs): |
|
self.num_timesteps_cond = default(num_timesteps_cond, 1) |
|
self.scale_by_std = scale_by_std |
|
assert self.num_timesteps_cond <= kwargs['timesteps'] |
|
|
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
ignore_keys = kwargs.pop("ignore_keys", []) |
|
conditioning_key = default(conditioning_key, 'crossattn') |
|
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) |
|
|
|
self.cond_stage_trainable = cond_stage_trainable |
|
self.cond_stage_key = cond_stage_key |
|
self.noise_strength = noise_strength |
|
self.use_dynamic_rescale = use_dynamic_rescale |
|
self.loop_video = loop_video |
|
self.fps_condition_type = fps_condition_type |
|
self.perframe_ae = perframe_ae |
|
|
|
self.logdir = logdir |
|
self.rand_cond_frame = rand_cond_frame |
|
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time |
|
|
|
try: |
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 |
|
except: |
|
self.num_downs = 0 |
|
if not scale_by_std: |
|
self.scale_factor = scale_factor |
|
else: |
|
self.register_buffer('scale_factor', torch.tensor(scale_factor)) |
|
|
|
if use_dynamic_rescale: |
|
scale_arr1 = np.linspace(1.0, base_scale, turning_step) |
|
scale_arr2 = np.full(self.num_timesteps, base_scale) |
|
scale_arr = np.concatenate((scale_arr1, scale_arr2)) |
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
self.register_buffer('scale_arr', to_torch(scale_arr)) |
|
|
|
self.instantiate_first_stage(first_stage_config) |
|
self.instantiate_cond_stage(cond_stage_config) |
|
self.first_stage_config = first_stage_config |
|
self.cond_stage_config = cond_stage_config |
|
self.clip_denoised = False |
|
|
|
self.cond_stage_forward = cond_stage_forward |
|
self.encoder_type = encoder_type |
|
assert(encoder_type in ["2d", "3d"]) |
|
self.uncond_prob = uncond_prob |
|
self.classifier_free_guidance = True if uncond_prob > 0 else False |
|
assert(uncond_type in ["zero_embed", "empty_seq"]) |
|
self.uncond_type = uncond_type |
|
|
|
self.restarted_from_ckpt = False |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) |
|
self.restarted_from_ckpt = True |
|
|
|
def make_cond_schedule(self, ): |
|
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) |
|
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() |
|
self.cond_ids[:self.num_timesteps_cond] = ids |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None): |
|
|
|
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and \ |
|
not self.restarted_from_ckpt: |
|
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' |
|
|
|
mainlogger.info("### USING STD-RESCALING ###") |
|
x = super().get_input(batch, self.first_stage_key) |
|
x = x.to(self.device) |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
del self.scale_factor |
|
self.register_buffer('scale_factor', 1. / z.flatten().std()) |
|
mainlogger.info(f"setting self.scale_factor to {self.scale_factor}") |
|
mainlogger.info("### USING STD-RESCALING ###") |
|
mainlogger.info(f"std={z.flatten().std()}") |
|
|
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) |
|
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1 |
|
if self.shorten_cond_schedule: |
|
self.make_cond_schedule() |
|
|
|
def instantiate_first_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.first_stage_model = model.eval() |
|
self.first_stage_model.train = disabled_train |
|
for param in self.first_stage_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def instantiate_cond_stage(self, config): |
|
if not self.cond_stage_trainable: |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model.eval() |
|
self.cond_stage_model.train = disabled_train |
|
for param in self.cond_stage_model.parameters(): |
|
param.requires_grad = False |
|
else: |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model |
|
|
|
def get_learned_conditioning(self, c): |
|
if self.cond_stage_forward is None: |
|
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): |
|
c = self.cond_stage_model.encode(c) |
|
if isinstance(c, DiagonalGaussianDistribution): |
|
c = c.mode() |
|
else: |
|
c = self.cond_stage_model(c) |
|
else: |
|
assert hasattr(self.cond_stage_model, self.cond_stage_forward) |
|
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) |
|
return c |
|
|
|
def get_first_stage_encoding(self, encoder_posterior, noise=None): |
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
z = encoder_posterior.sample(noise=noise) |
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
z = encoder_posterior |
|
else: |
|
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") |
|
return self.scale_factor * z |
|
|
|
@torch.no_grad() |
|
def encode_first_stage(self, x): |
|
if self.encoder_type == "2d" and x.dim() == 5: |
|
b, _, t, _, _ = x.shape |
|
x = rearrange(x, 'b c t h w -> (b t) c h w') |
|
reshape_back = True |
|
else: |
|
reshape_back = False |
|
|
|
|
|
if not self.perframe_ae: |
|
encoder_posterior = self.first_stage_model.encode(x) |
|
results = self.get_first_stage_encoding(encoder_posterior).detach() |
|
else: |
|
results = [] |
|
for index in range(x.shape[0]): |
|
frame_batch = self.first_stage_model.encode(x[index:index+1,:,:,:]) |
|
frame_result = self.get_first_stage_encoding(frame_batch).detach() |
|
results.append(frame_result) |
|
results = torch.cat(results, dim=0) |
|
|
|
if reshape_back: |
|
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) |
|
|
|
return results |
|
|
|
def decode_core(self, z, **kwargs): |
|
if self.encoder_type == "2d" and z.dim() == 5: |
|
b, _, t, _, _ = z.shape |
|
z = rearrange(z, 'b c t h w -> (b t) c h w') |
|
reshape_back = True |
|
else: |
|
reshape_back = False |
|
|
|
z = 1. / self.scale_factor * z |
|
if not self.perframe_ae: |
|
results = self.first_stage_model.decode(z, **kwargs) |
|
else: |
|
|
|
results = [] |
|
|
|
n_samples = default(self.en_and_decode_n_samples_a_time, self.temporal_length) |
|
n_rounds = math.ceil(z.shape[0] / n_samples) |
|
with torch.autocast("cuda", enabled=True): |
|
for n in range(n_rounds): |
|
if isinstance(self.first_stage_model.decoder, VideoDecoder): |
|
kwargs.update({"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}) |
|
else: |
|
kwargs = {} |
|
|
|
out = self.first_stage_model.decode( |
|
z[n * n_samples : (n + 1) * n_samples], **kwargs |
|
) |
|
results.append(out) |
|
results = torch.cat(results, dim=0) |
|
|
|
if reshape_back: |
|
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) |
|
return results |
|
|
|
@torch.no_grad() |
|
def decode_first_stage(self, z, **kwargs): |
|
return self.decode_core(z, **kwargs) |
|
|
|
|
|
def differentiable_decode_first_stage(self, z, **kwargs): |
|
return self.decode_core(z, **kwargs) |
|
|
|
@torch.no_grad() |
|
def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False): |
|
|
|
x = super().get_input(batch, self.first_stage_key) |
|
|
|
|
|
z = self.encode_first_stage(x) |
|
|
|
|
|
cond = batch[self.cond_stage_key] |
|
if random_uncond and self.uncond_type == 'empty_seq': |
|
for i, ci in enumerate(cond): |
|
if random.random() < self.uncond_prob: |
|
cond[i] = "" |
|
if isinstance(cond, dict) or isinstance(cond, list): |
|
cond_emb = self.get_learned_conditioning(cond) |
|
else: |
|
cond_emb = self.get_learned_conditioning(cond.to(self.device)) |
|
if random_uncond and self.uncond_type == 'zero_embed': |
|
for i, ci in enumerate(cond): |
|
if random.random() < self.uncond_prob: |
|
cond_emb[i] = torch.zeros_like(cond_emb[i]) |
|
|
|
out = [z, cond_emb] |
|
|
|
if return_first_stage_outputs: |
|
xrec = self.decode_first_stage(z) |
|
out.extend([xrec]) |
|
|
|
if return_original_cond: |
|
out.append(cond) |
|
|
|
return out |
|
|
|
def forward(self, x, c, **kwargs): |
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() |
|
if self.use_dynamic_rescale: |
|
x = x * extract_into_tensor(self.scale_arr, t, x.shape) |
|
return self.p_losses(x, c, t, **kwargs) |
|
|
|
def shared_step(self, batch, random_uncond, **kwargs): |
|
x, c = self.get_batch_input(batch, random_uncond=random_uncond) |
|
loss, loss_dict = self(x, c, **kwargs) |
|
|
|
return loss, loss_dict |
|
|
|
def apply_model(self, x_noisy, t, cond, **kwargs): |
|
if isinstance(cond, dict): |
|
|
|
pass |
|
else: |
|
if not isinstance(cond, list): |
|
cond = [cond] |
|
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' |
|
cond = {key: [cond[0]]} |
|
|
|
control_cond = cond["control_cond"] |
|
|
|
if control_cond is not None: |
|
control_cond = rearrange(control_cond, 'b c t h w-> (b t) c h w') |
|
control_x = rearrange(x_noisy, 'b c t h w-> (b t) c h w') |
|
control_context = repeat(cond["c_crossattn"][0], "b c l-> (repeat b) c l", repeat=16) |
|
control = self.control_model(x=control_x, hint=control_cond, timesteps=t, context=control_context) |
|
control = [c * self.control_scale for c in control] |
|
else: |
|
control = None |
|
|
|
x_recon = self.model(x_noisy, t, c_crossattn=cond["c_crossattn"], c_concat=cond["c_concat"], control=control, **kwargs) |
|
|
|
if isinstance(x_recon, tuple): |
|
return x_recon[0] |
|
else: |
|
return x_recon |
|
|
|
|
|
def p_losses(self, x_start, cond, t, noise=None, **kwargs): |
|
if self.noise_strength > 0: |
|
b, c, f, _, _ = x_start.shape |
|
offset_noise = torch.randn(b, c, f, 1, 1, device=x_start.device) |
|
noise = default(noise, lambda: torch.randn_like(x_start) + self.noise_strength * offset_noise) |
|
else: |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
|
|
model_output = self.apply_model(x_noisy, t, cond, **kwargs) |
|
|
|
loss_dict = {} |
|
prefix = 'train' if self.training else 'val' |
|
|
|
if self.parameterization == "x0": |
|
target = x_start |
|
elif self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "v": |
|
target = self.get_v(x_start, noise, t) |
|
else: |
|
raise NotImplementedError() |
|
|
|
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4]) |
|
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) |
|
|
|
if self.logvar.device is not self.device: |
|
self.logvar = self.logvar.to(self.device) |
|
logvar_t = self.logvar[t] |
|
|
|
loss = loss_simple / torch.exp(logvar_t) + logvar_t |
|
|
|
if self.learn_logvar: |
|
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) |
|
loss_dict.update({'logvar': self.logvar.data.mean()}) |
|
|
|
loss = self.l_simple_weight * loss.mean() |
|
|
|
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4)) |
|
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() |
|
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) |
|
loss += (self.original_elbo_weight * loss_vlb) |
|
loss_dict.update({f'{prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def training_step(self, batch, batch_idx): |
|
loss, loss_dict = self.shared_step(batch, random_uncond=self.classifier_free_guidance) |
|
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False) |
|
|
|
''' |
|
if self.use_scheduler: |
|
lr = self.optimizers().param_groups[0]['lr'] |
|
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True) |
|
''' |
|
if (batch_idx+1) % self.log_every_t == 0: |
|
mainlogger.info(f"batch:{batch_idx}|epoch:{self.current_epoch} [globalstep:{self.global_step}]: loss={loss}") |
|
return loss |
|
|
|
def _get_denoise_row_from_list(self, samples, desc=''): |
|
denoise_row = [] |
|
for zd in tqdm(samples, desc=desc): |
|
denoise_row.append(self.decode_first_stage(zd.to(self.device))) |
|
n_log_timesteps = len(denoise_row) |
|
|
|
denoise_row = torch.stack(denoise_row) |
|
|
|
if denoise_row.dim() == 5: |
|
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') |
|
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') |
|
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps) |
|
elif denoise_row.dim() == 6: |
|
|
|
video_length = denoise_row.shape[3] |
|
denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w') |
|
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w') |
|
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w') |
|
denoise_grid = make_grid(denoise_grid, nrow=video_length) |
|
else: |
|
raise ValueError |
|
|
|
return denoise_grid |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, sample=True, ddim_steps=200, ddim_eta=1., plot_denoise_rows=False, \ |
|
unconditional_guidance_scale=1.0, **kwargs): |
|
""" log images for LatentDiffusion """ |
|
|
|
sampled_img_num = 2 |
|
for key in batch.keys(): |
|
batch[key] = batch[key][:sampled_img_num] |
|
|
|
|
|
use_ddim = ddim_steps is not None |
|
log = dict() |
|
z, c, xrec, xc = self.get_batch_input(batch, random_uncond=False, |
|
return_first_stage_outputs=True, |
|
return_original_cond=True) |
|
|
|
N = xrec.shape[0] |
|
log["reconst"] = xrec |
|
log["condition"] = xc |
|
|
|
|
|
if sample: |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
if isinstance(c, dict): |
|
c_cat, c_emb = c["c_concat"][0], c["c_crossattn"][0] |
|
log["condition_cat"] = c_cat |
|
else: |
|
c_emb = c |
|
|
|
if self.uncond_type == "empty_seq": |
|
prompts = N * [""] |
|
uc = self.get_learned_conditioning(prompts) |
|
elif self.uncond_type == "zero_embed": |
|
uc = torch.zeros_like(c_emb) |
|
|
|
if isinstance(c, dict): |
|
uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]} |
|
uc = uc_hybrid |
|
else: |
|
uc = None |
|
|
|
with self.ema_scope("Plotting"): |
|
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps,eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc, x0=z, **kwargs) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
|
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
return log |
|
|
|
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs): |
|
t_in = t |
|
model_out = self.apply_model(x, t_in, c, **kwargs) |
|
|
|
if score_corrector is not None: |
|
assert self.parameterization == "eps" |
|
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) |
|
|
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
else: |
|
raise NotImplementedError() |
|
|
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
|
|
if return_x0: |
|
return model_mean, posterior_variance, posterior_log_variance, x_recon |
|
else: |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \ |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs): |
|
b, *_, device = *x.shape, x.device |
|
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \ |
|
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs) |
|
if return_x0: |
|
model_mean, _, model_log_variance, x0 = outputs |
|
else: |
|
model_mean, _, model_log_variance = outputs |
|
|
|
noise = noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
|
|
if return_x0: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 |
|
else: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \ |
|
timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs): |
|
|
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
device = self.betas.device |
|
b = shape[0] |
|
|
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
intermediates = [img] |
|
if timesteps is None: |
|
timesteps = self.num_timesteps |
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
|
|
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps)) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
assert x0.shape[2:3] == mask.shape[2:3] |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != 'hybrid' |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs) |
|
if mask is not None: |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1. - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(img) |
|
if callback: callback(i) |
|
if img_callback: img_callback(img, i) |
|
|
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, \ |
|
verbose=True, timesteps=None, mask=None, x0=None, shape=None, **kwargs): |
|
if shape is None: |
|
shape = (batch_size, self.channels, self.temporal_length, *self.image_size) |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else |
|
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} |
|
else: |
|
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] |
|
return self.p_sample_loop(cond, |
|
shape, |
|
return_intermediates=return_intermediates, x_T=x_T, |
|
verbose=verbose, timesteps=timesteps, |
|
mask=mask, x0=x0, **kwargs) |
|
|
|
@torch.no_grad() |
|
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): |
|
if ddim: |
|
ddim_sampler = DDIMSampler(self) |
|
shape = (self.channels, self.temporal_length, *self.image_size) |
|
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) |
|
|
|
else: |
|
samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs) |
|
|
|
return samples, intermediates |
|
|
|
def configure_schedulers(self, optimizer): |
|
assert 'target' in self.scheduler_config |
|
scheduler_name = self.scheduler_config.target.split('.')[-1] |
|
interval = self.scheduler_config.interval |
|
frequency = self.scheduler_config.frequency |
|
if scheduler_name == "LambdaLRScheduler": |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
scheduler.start_step = self.global_step |
|
lr_scheduler = { |
|
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), |
|
'interval': interval, |
|
'frequency': frequency |
|
} |
|
elif scheduler_name == "CosineAnnealingLRScheduler": |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
decay_steps = scheduler.decay_steps |
|
last_step = -1 if self.global_step == 0 else scheduler.start_step |
|
lr_scheduler = { |
|
'scheduler': CosineAnnealingLR(optimizer, T_max=decay_steps, last_epoch=last_step), |
|
'interval': interval, |
|
'frequency': frequency |
|
} |
|
else: |
|
raise NotImplementedError |
|
return lr_scheduler |
|
|
|
class LatentVisualDiffusion(LatentDiffusion): |
|
def __init__(self, img_cond_stage_config, image_proj_stage_config, freeze_embedder=True, image_proj_model_trainable=True, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.image_proj_model_trainable = image_proj_model_trainable |
|
self._init_embedder(img_cond_stage_config, freeze_embedder) |
|
self._init_img_ctx_projector(image_proj_stage_config, image_proj_model_trainable) |
|
|
|
def _init_img_ctx_projector(self, config, trainable): |
|
self.image_proj_model = instantiate_from_config(config) |
|
if not trainable: |
|
self.image_proj_model.eval() |
|
self.image_proj_model.train = disabled_train |
|
for param in self.image_proj_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def _init_embedder(self, config, freeze=True): |
|
self.embedder = instantiate_from_config(config) |
|
if freeze: |
|
self.embedder.eval() |
|
self.embedder.train = disabled_train |
|
for param in self.embedder.parameters(): |
|
param.requires_grad = False |
|
|
|
def shared_step(self, batch, random_uncond, **kwargs): |
|
x, c, fs = self.get_batch_input(batch, random_uncond=random_uncond, return_fs=True) |
|
kwargs.update({"fs": fs.long()}) |
|
loss, loss_dict = self(x, c, **kwargs) |
|
return loss, loss_dict |
|
|
|
def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False, return_fs=False, return_cond_frame=False, return_original_input=False, **kwargs): |
|
|
|
x = super().get_input(batch, self.first_stage_key) |
|
|
|
z = self.encode_first_stage(x) |
|
|
|
|
|
cond_input = batch[self.cond_stage_key] |
|
|
|
if isinstance(cond_input, dict) or isinstance(cond_input, list): |
|
cond_emb = self.get_learned_conditioning(cond_input) |
|
else: |
|
cond_emb = self.get_learned_conditioning(cond_input.to(self.device)) |
|
|
|
cond = {} |
|
|
|
if random_uncond: |
|
random_num = torch.rand(x.size(0), device=x.device) |
|
else: |
|
random_num = torch.ones(x.size(0), device=x.device) |
|
prompt_mask = rearrange(random_num < 2 * self.uncond_prob, "n -> n 1 1") |
|
input_mask = 1 - rearrange((random_num >= self.uncond_prob).float() * (random_num < 3 * self.uncond_prob).float(), "n -> n 1 1 1") |
|
|
|
null_prompt = self.get_learned_conditioning([""]) |
|
prompt_imb = torch.where(prompt_mask, null_prompt, cond_emb.detach()) |
|
|
|
|
|
cond_frame_index = 0 |
|
if self.rand_cond_frame: |
|
cond_frame_index = random.randint(0, self.model.diffusion_model.temporal_length-1) |
|
|
|
img = x[:,:,cond_frame_index,...] |
|
img = input_mask * img |
|
|
|
img_emb = self.embedder(img) |
|
img_emb = self.image_proj_model(img_emb) |
|
|
|
if self.model.conditioning_key == 'hybrid': |
|
|
|
img_cat_cond = z[:,:,cond_frame_index,:,:] |
|
img_cat_cond = img_cat_cond.unsqueeze(2) |
|
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2]) |
|
|
|
cond["c_concat"] = [img_cat_cond] |
|
cond["c_crossattn"] = [torch.cat([prompt_imb, img_emb], dim=1)] |
|
|
|
out = [z, cond] |
|
if return_first_stage_outputs: |
|
xrec = self.decode_first_stage(z) |
|
out.extend([xrec]) |
|
|
|
if return_original_cond: |
|
out.append(cond_input) |
|
if return_fs: |
|
if self.fps_condition_type == 'fs': |
|
fs = super().get_input(batch, 'frame_stride') |
|
elif self.fps_condition_type == 'fps': |
|
fs = super().get_input(batch, 'fps') |
|
out.append(fs) |
|
if return_cond_frame: |
|
out.append(x[:,:,cond_frame_index,...].unsqueeze(2)) |
|
if return_original_input: |
|
out.append(x) |
|
|
|
return out |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, sample=True, ddim_steps=50, ddim_eta=1., plot_denoise_rows=False, \ |
|
unconditional_guidance_scale=1.0, mask=None, **kwargs): |
|
""" log images for LatentVisualDiffusion """ |
|
|
|
sampled_img_num = 1 |
|
for key in batch.keys(): |
|
batch[key] = batch[key][:sampled_img_num] |
|
|
|
|
|
use_ddim = ddim_steps is not None |
|
log = dict() |
|
|
|
z, c, xrec, xc, fs, cond_x = self.get_batch_input(batch, random_uncond=False, |
|
return_first_stage_outputs=True, |
|
return_original_cond=True, |
|
return_fs=True, |
|
return_cond_frame=True) |
|
|
|
N = xrec.shape[0] |
|
log["image_condition"] = cond_x |
|
log["reconst"] = xrec |
|
xc_with_fs = [] |
|
for idx, content in enumerate(xc): |
|
xc_with_fs.append(content + '_fs=' + str(fs[idx].item())) |
|
log["condition"] = xc_with_fs |
|
kwargs.update({"fs": fs.long()}) |
|
|
|
c_cat = None |
|
if sample: |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
if isinstance(c, dict): |
|
c_emb = c["c_crossattn"][0] |
|
if 'c_concat' in c.keys(): |
|
c_cat = c["c_concat"][0] |
|
else: |
|
c_emb = c |
|
|
|
if self.uncond_type == "empty_seq": |
|
prompts = N * [""] |
|
uc_prompt = self.get_learned_conditioning(prompts) |
|
elif self.uncond_type == "zero_embed": |
|
uc_prompt = torch.zeros_like(c_emb) |
|
|
|
img = torch.zeros_like(xrec[:,:,0]) |
|
|
|
img_emb = self.embedder(img) |
|
uc_img = self.image_proj_model(img_emb) |
|
|
|
uc = torch.cat([uc_prompt, uc_img], dim=1) |
|
|
|
if isinstance(c, dict): |
|
uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]} |
|
uc = uc_hybrid |
|
else: |
|
uc = None |
|
|
|
with self.ema_scope("Plotting"): |
|
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps,eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc, x0=z, **kwargs) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
|
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
return log |
|
|
|
def configure_optimizers(self): |
|
""" configure_optimizers for LatentDiffusion """ |
|
lr = self.learning_rate |
|
|
|
params = list(self.model.parameters()) |
|
mainlogger.info(f"@Training [{len(params)}] Full Paramters.") |
|
|
|
if self.cond_stage_trainable: |
|
params_cond_stage = [p for p in self.cond_stage_model.parameters() if p.requires_grad == True] |
|
mainlogger.info(f"@Training [{len(params_cond_stage)}] Paramters for Cond_stage_model.") |
|
params.extend(params_cond_stage) |
|
|
|
if self.image_proj_model_trainable: |
|
mainlogger.info(f"@Training [{len(list(self.image_proj_model.parameters()))}] Paramters for Image_proj_model.") |
|
params.extend(list(self.image_proj_model.parameters())) |
|
|
|
if self.learn_logvar: |
|
mainlogger.info('Diffusion model optimizing logvar') |
|
if isinstance(params[0], dict): |
|
params.append({"params": [self.logvar]}) |
|
else: |
|
params.append(self.logvar) |
|
|
|
|
|
optimizer = torch.optim.AdamW(params, lr=lr) |
|
|
|
|
|
if self.use_scheduler: |
|
mainlogger.info("Setting up scheduler...") |
|
lr_scheduler = self.configure_schedulers(optimizer) |
|
return [optimizer], [lr_scheduler] |
|
|
|
return optimizer |
|
|
|
|
|
class DiffusionWrapper(pl.LightningModule): |
|
def __init__(self, diff_model_config, conditioning_key): |
|
super().__init__() |
|
self.diffusion_model = instantiate_from_config(diff_model_config) |
|
self.conditioning_key = conditioning_key |
|
|
|
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, control = None, |
|
c_adm=None, s=None, mask=None, **kwargs): |
|
|
|
if self.conditioning_key is None: |
|
out = self.diffusion_model(x, t) |
|
elif self.conditioning_key == 'concat': |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
out = self.diffusion_model(xc, t, **kwargs) |
|
elif self.conditioning_key == 'crossattn': |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(x, t, context=cc, **kwargs) |
|
elif self.conditioning_key == 'hybrid': |
|
|
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, control=control, **kwargs) |
|
|
|
elif self.conditioning_key == 'resblockcond': |
|
cc = c_crossattn[0] |
|
out = self.diffusion_model(x, t, context=cc) |
|
elif self.conditioning_key == 'adm': |
|
cc = c_crossattn[0] |
|
out = self.diffusion_model(x, t, y=cc) |
|
elif self.conditioning_key == 'hybrid-adm': |
|
assert c_adm is not None |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs) |
|
elif self.conditioning_key == 'hybrid-time': |
|
assert s is not None |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, s=s) |
|
elif self.conditioning_key == 'concat-time-mask': |
|
|
|
xc = torch.cat([x] + c_concat, dim=1) |
|
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask) |
|
elif self.conditioning_key == 'concat-adm-mask': |
|
|
|
if c_concat is not None: |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
else: |
|
xc = x |
|
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask) |
|
elif self.conditioning_key == 'hybrid-adm-mask': |
|
cc = torch.cat(c_crossattn, 1) |
|
if c_concat is not None: |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
else: |
|
xc = x |
|
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask) |
|
elif self.conditioning_key == 'hybrid-time-adm': |
|
|
|
assert c_adm is not None |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm) |
|
elif self.conditioning_key == 'crossattn-adm': |
|
assert c_adm is not None |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(x, t, context=cc, y=c_adm) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return out |