File size: 10,102 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# InstructPix2Pix SDXL training example
***This is based on the original InstructPix2Pix training example.***
[Stable Diffusion XL](https://huggingface.co/papers/2307.01952) (or SDXL) is the latest image generation model that is tailored towards more photorealistic outputs with more detailed imagery and composition compared to previous SD models. It leverages a three times larger UNet backbone. The increase of model parameters is mainly due to more attention blocks and a larger cross-attention context as SDXL uses a second text encoder.
The `train_instruct_pix2pix_sdxl.py` script shows how to implement the training procedure and adapt it for Stable Diffusion XL.
***Disclaimer: Even though `train_instruct_pix2pix_sdxl.py` implements the InstructPix2Pix
training procedure while being faithful to the [original implementation](https://github.com/timothybrooks/instruct-pix2pix) we have only tested it on a [small-scale dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples). This can impact the end results. For better results, we recommend longer training runs with a larger dataset. [Here](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) you can find a large dataset for InstructPix2Pix training.***
## Running locally with PyTorch
### Installing the dependencies
Refer to the original InstructPix2Pix training example for installing the dependencies.
You will also need to get access of SDXL by filling the [form](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
### Toy example
As mentioned before, we'll use a [small toy dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) for training. The dataset
is a smaller version of the [original dataset](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) used in the InstructPix2Pix paper.
Configure environment variables such as the dataset identifier and the Stable Diffusion
checkpoint:
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export DATASET_ID="fusing/instructpix2pix-1000-samples"
```
Now, we can launch training:
```bash
accelerate launch train_instruct_pix2pix_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_ID \
--enable_xformers_memory_efficient_attention \
--resolution=256 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--seed=42 \
--push_to_hub
```
Additionally, we support performing validation inference to monitor training progress
with Weights and Biases. You can enable this feature with `report_to="wandb"`:
```bash
accelerate launch train_instruct_pix2pix_sdxl.py \
--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \
--dataset_name=$DATASET_ID \
--use_ema \
--enable_xformers_memory_efficient_attention \
--resolution=512 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--seed=42 \
--val_image_url_or_path="https://datasets-server.huggingface.co/assets/fusing/instructpix2pix-1000-samples/--/fusing--instructpix2pix-1000-samples/train/23/input_image/image.jpg" \
--validation_prompt="make it in japan" \
--report_to=wandb \
--push_to_hub
```
We recommend this type of validation as it can be useful for model debugging. Note that you need `wandb` installed to use this. You can install `wandb` by running `pip install wandb`.
[Here](https://wandb.ai/sayakpaul/instruct-pix2pix-sdxl-new/runs/sw53gxmc), you can find an example training run that includes some validation samples and the training hyperparameters.
***Note: In the original paper, the authors observed that even when the model is trained with an image resolution of 256x256, it generalizes well to bigger resolutions such as 512x512. This is likely because of the larger dataset they used during training.***
## Training with multiple GPUs
`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:
```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_instruct_pix2pix_sdxl.py \
--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \
--dataset_name=$DATASET_ID \
--use_ema \
--enable_xformers_memory_efficient_attention \
--resolution=512 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--seed=42 \
--val_image_url_or_path="https://datasets-server.huggingface.co/assets/fusing/instructpix2pix-1000-samples/--/fusing--instructpix2pix-1000-samples/train/23/input_image/image.jpg" \
--validation_prompt="make it in japan" \
--report_to=wandb \
--push_to_hub
```
## Inference
Once training is complete, we can perform inference:
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionXLInstructPix2PixPipeline
model_id = "your_model_id" # <- replace this
pipe = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
url = "https://datasets-server.huggingface.co/assets/fusing/instructpix2pix-1000-samples/--/fusing--instructpix2pix-1000-samples/train/23/input_image/image.jpg"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "make it Japan"
num_inference_steps = 20
image_guidance_scale = 1.5
guidance_scale = 10
edited_image = pipe(prompt,
image=image,
num_inference_steps=num_inference_steps,
image_guidance_scale=image_guidance_scale,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
edited_image.save("edited_image.png")
```
We encourage you to play with the following three parameters to control
speed and quality during performance:
* `num_inference_steps`
* `image_guidance_scale`
* `guidance_scale`
Particularly, `image_guidance_scale` and `guidance_scale` can have a profound impact
on the generated ("edited") image (see [here](https://twitter.com/RisingSayak/status/1628392199196151808?s=20) for an example).
If you're looking for some interesting ways to use the InstructPix2Pix training methodology, we welcome you to check out this blog post: [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd).
## Compare between SD and SDXL
We aim to understand the differences resulting from the use of SD-1.5 and SDXL-0.9 as pretrained models. To achieve this, we trained on the [small toy dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) using both of these pretrained models. The training script is as follows:
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5" or "stabilityai/stable-diffusion-xl-base-0.9"
export DATASET_ID="fusing/instructpix2pix-1000-samples"
accelerate launch train_instruct_pix2pix.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_ID \
--use_ema \
--enable_xformers_memory_efficient_attention \
--resolution=512 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--seed=42 \
--val_image_url="https://datasets-server.huggingface.co/assets/fusing/instructpix2pix-1000-samples/--/fusing--instructpix2pix-1000-samples/train/23/input_image/image.jpg" \
--validation_prompt="make it in Japan" \
--report_to=wandb \
--push_to_hub
```
We discovered that compared to training with SD-1.5 as the pretrained model, SDXL-0.9 results in a lower training loss value (SD-1.5 yields 0.0599, SDXL scores 0.0254). Moreover, from a visual perspective, the results obtained using SDXL demonstrated fewer artifacts and a richer detail. Notably, SDXL starts to preserve the structure of the original image earlier on.
The following two GIFs provide intuitive visual results. We observed, for each step, what kind of results could be achieved using the image
<p align="center">
<img src="https://datasets-server.huggingface.co/assets/fusing/instructpix2pix-1000-samples/--/fusing--instructpix2pix-1000-samples/train/23/input_image/image.jpg" alt="input for make it Japan" width=600/>
</p>
with "make it in Japan” as the prompt. It can be seen that SDXL starts preserving the details of the original image earlier, resulting in higher fidelity outcomes sooner.
* SD-1.5: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd_ip2p_training_val_img_progress.gif
<p align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd_ip2p_training_val_img_progress.gif" alt="input for make it Japan" width=600/>
</p>
* SDXL: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_ip2p_training_val_img_progress.gif
<p align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_ip2p_training_val_img_progress.gif" alt="input for make it Japan" width=600/>
</p>
|