File size: 28,390 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils import BaseOutput
from ..attention_processor import Attention
from ..modeling_utils import ModelMixin
# Copied from diffusers.pipelines.wuerstchen.modeling_wuerstchen_common.WuerstchenLayerNorm with WuerstchenLayerNorm -> SDCascadeLayerNorm
class SDCascadeLayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = super().forward(x)
return x.permute(0, 3, 1, 2)
class SDCascadeTimestepBlock(nn.Module):
def __init__(self, c, c_timestep, conds=[]):
super().__init__()
self.mapper = nn.Linear(c_timestep, c * 2)
self.conds = conds
for cname in conds:
setattr(self, f"mapper_{cname}", nn.Linear(c_timestep, c * 2))
def forward(self, x, t):
t = t.chunk(len(self.conds) + 1, dim=1)
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
for i, c in enumerate(self.conds):
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
a, b = a + ac, b + bc
return x * (1 + a) + b
class SDCascadeResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):
super().__init__()
self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c + c_skip, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
nn.Linear(c * 4, c),
)
def forward(self, x, x_skip=None):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
# from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
class GlobalResponseNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * stand_div_norm) + self.beta + x
class SDCascadeAttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
def forward(self, x, kv):
kv = self.kv_mapper(kv)
norm_x = self.norm(x)
if self.self_attn:
batch_size, channel, _, _ = x.shape
kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1)
x = x + self.attention(norm_x, encoder_hidden_states=kv)
return x
class UpDownBlock2d(nn.Module):
def __init__(self, in_channels, out_channels, mode, enabled=True):
super().__init__()
if mode not in ["up", "down"]:
raise ValueError(f"{mode} not supported")
interpolation = (
nn.Upsample(scale_factor=2 if mode == "up" else 0.5, mode="bilinear", align_corners=True)
if enabled
else nn.Identity()
)
mapping = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.blocks = nn.ModuleList([interpolation, mapping] if mode == "up" else [mapping, interpolation])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
@dataclass
class StableCascadeUNetOutput(BaseOutput):
sample: torch.Tensor = None
class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalModelMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 16,
out_channels: int = 16,
timestep_ratio_embedding_dim: int = 64,
patch_size: int = 1,
conditioning_dim: int = 2048,
block_out_channels: Tuple[int] = (2048, 2048),
num_attention_heads: Tuple[int] = (32, 32),
down_num_layers_per_block: Tuple[int] = (8, 24),
up_num_layers_per_block: Tuple[int] = (24, 8),
down_blocks_repeat_mappers: Optional[Tuple[int]] = (
1,
1,
),
up_blocks_repeat_mappers: Optional[Tuple[int]] = (1, 1),
block_types_per_layer: Tuple[Tuple[str]] = (
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
),
clip_text_in_channels: Optional[int] = None,
clip_text_pooled_in_channels=1280,
clip_image_in_channels: Optional[int] = None,
clip_seq=4,
effnet_in_channels: Optional[int] = None,
pixel_mapper_in_channels: Optional[int] = None,
kernel_size=3,
dropout: Union[float, Tuple[float]] = (0.1, 0.1),
self_attn: Union[bool, Tuple[bool]] = True,
timestep_conditioning_type: Tuple[str] = ("sca", "crp"),
switch_level: Optional[Tuple[bool]] = None,
):
"""
Parameters:
in_channels (`int`, defaults to 16):
Number of channels in the input sample.
out_channels (`int`, defaults to 16):
Number of channels in the output sample.
timestep_ratio_embedding_dim (`int`, defaults to 64):
Dimension of the projected time embedding.
patch_size (`int`, defaults to 1):
Patch size to use for pixel unshuffling layer
conditioning_dim (`int`, defaults to 2048):
Dimension of the image and text conditional embedding.
block_out_channels (Tuple[int], defaults to (2048, 2048)):
Tuple of output channels for each block.
num_attention_heads (Tuple[int], defaults to (32, 32)):
Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have
attention.
down_num_layers_per_block (Tuple[int], defaults to [8, 24]):
Number of layers in each down block.
up_num_layers_per_block (Tuple[int], defaults to [24, 8]):
Number of layers in each up block.
down_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]):
Number of 1x1 Convolutional layers to repeat in each down block.
up_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]):
Number of 1x1 Convolutional layers to repeat in each up block.
block_types_per_layer (Tuple[Tuple[str]], optional,
defaults to (
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock",
"SDCascadeTimestepBlock", "SDCascadeAttnBlock")
): Block types used in each layer of the up/down blocks.
clip_text_in_channels (`int`, *optional*, defaults to `None`):
Number of input channels for CLIP based text conditioning.
clip_text_pooled_in_channels (`int`, *optional*, defaults to 1280):
Number of input channels for pooled CLIP text embeddings.
clip_image_in_channels (`int`, *optional*):
Number of input channels for CLIP based image conditioning.
clip_seq (`int`, *optional*, defaults to 4):
effnet_in_channels (`int`, *optional*, defaults to `None`):
Number of input channels for effnet conditioning.
pixel_mapper_in_channels (`int`, defaults to `None`):
Number of input channels for pixel mapper conditioning.
kernel_size (`int`, *optional*, defaults to 3):
Kernel size to use in the block convolutional layers.
dropout (Tuple[float], *optional*, defaults to (0.1, 0.1)):
Dropout to use per block.
self_attn (Union[bool, Tuple[bool]]):
Tuple of booleans that determine whether to use self attention in a block or not.
timestep_conditioning_type (Tuple[str], defaults to ("sca", "crp")):
Timestep conditioning type.
switch_level (Optional[Tuple[bool]], *optional*, defaults to `None`):
Tuple that indicates whether upsampling or downsampling should be applied in a block
"""
super().__init__()
if len(block_out_channels) != len(down_num_layers_per_block):
raise ValueError(
f"Number of elements in `down_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(up_num_layers_per_block):
raise ValueError(
f"Number of elements in `up_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(down_blocks_repeat_mappers):
raise ValueError(
f"Number of elements in `down_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(up_blocks_repeat_mappers):
raise ValueError(
f"Number of elements in `up_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(block_types_per_layer):
raise ValueError(
f"Number of elements in `block_types_per_layer` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
if isinstance(dropout, float):
dropout = (dropout,) * len(block_out_channels)
if isinstance(self_attn, bool):
self_attn = (self_attn,) * len(block_out_channels)
# CONDITIONING
if effnet_in_channels is not None:
self.effnet_mapper = nn.Sequential(
nn.Conv2d(effnet_in_channels, block_out_channels[0] * 4, kernel_size=1),
nn.GELU(),
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
if pixel_mapper_in_channels is not None:
self.pixels_mapper = nn.Sequential(
nn.Conv2d(pixel_mapper_in_channels, block_out_channels[0] * 4, kernel_size=1),
nn.GELU(),
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
self.clip_txt_pooled_mapper = nn.Linear(clip_text_pooled_in_channels, conditioning_dim * clip_seq)
if clip_text_in_channels is not None:
self.clip_txt_mapper = nn.Linear(clip_text_in_channels, conditioning_dim)
if clip_image_in_channels is not None:
self.clip_img_mapper = nn.Linear(clip_image_in_channels, conditioning_dim * clip_seq)
self.clip_norm = nn.LayerNorm(conditioning_dim, elementwise_affine=False, eps=1e-6)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
nn.Conv2d(in_channels * (patch_size**2), block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
def get_block(block_type, in_channels, nhead, c_skip=0, dropout=0, self_attn=True):
if block_type == "SDCascadeResBlock":
return SDCascadeResBlock(in_channels, c_skip, kernel_size=kernel_size, dropout=dropout)
elif block_type == "SDCascadeAttnBlock":
return SDCascadeAttnBlock(in_channels, conditioning_dim, nhead, self_attn=self_attn, dropout=dropout)
elif block_type == "SDCascadeTimestepBlock":
return SDCascadeTimestepBlock(
in_channels, timestep_ratio_embedding_dim, conds=timestep_conditioning_type
)
else:
raise ValueError(f"Block type {block_type} not supported")
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
self.down_downscalers = nn.ModuleList()
self.down_repeat_mappers = nn.ModuleList()
for i in range(len(block_out_channels)):
if i > 0:
self.down_downscalers.append(
nn.Sequential(
SDCascadeLayerNorm(block_out_channels[i - 1], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(
block_out_channels[i - 1], block_out_channels[i], mode="down", enabled=switch_level[i - 1]
)
if switch_level is not None
else nn.Conv2d(block_out_channels[i - 1], block_out_channels[i], kernel_size=2, stride=2),
)
)
else:
self.down_downscalers.append(nn.Identity())
down_block = nn.ModuleList()
for _ in range(down_num_layers_per_block[i]):
for block_type in block_types_per_layer[i]:
block = get_block(
block_type,
block_out_channels[i],
num_attention_heads[i],
dropout=dropout[i],
self_attn=self_attn[i],
)
down_block.append(block)
self.down_blocks.append(down_block)
if down_blocks_repeat_mappers is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(down_blocks_repeat_mappers[i] - 1):
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1))
self.down_repeat_mappers.append(block_repeat_mappers)
# -- up blocks
self.up_blocks = nn.ModuleList()
self.up_upscalers = nn.ModuleList()
self.up_repeat_mappers = nn.ModuleList()
for i in reversed(range(len(block_out_channels))):
if i > 0:
self.up_upscalers.append(
nn.Sequential(
SDCascadeLayerNorm(block_out_channels[i], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(
block_out_channels[i], block_out_channels[i - 1], mode="up", enabled=switch_level[i - 1]
)
if switch_level is not None
else nn.ConvTranspose2d(
block_out_channels[i], block_out_channels[i - 1], kernel_size=2, stride=2
),
)
)
else:
self.up_upscalers.append(nn.Identity())
up_block = nn.ModuleList()
for j in range(up_num_layers_per_block[::-1][i]):
for k, block_type in enumerate(block_types_per_layer[i]):
c_skip = block_out_channels[i] if i < len(block_out_channels) - 1 and j == k == 0 else 0
block = get_block(
block_type,
block_out_channels[i],
num_attention_heads[i],
c_skip=c_skip,
dropout=dropout[i],
self_attn=self_attn[i],
)
up_block.append(block)
self.up_blocks.append(up_block)
if up_blocks_repeat_mappers is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(up_blocks_repeat_mappers[::-1][i] - 1):
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1))
self.up_repeat_mappers.append(block_repeat_mappers)
# OUTPUT
self.clf = nn.Sequential(
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
nn.Conv2d(block_out_channels[0], out_channels * (patch_size**2), kernel_size=1),
nn.PixelShuffle(patch_size),
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, value=False):
self.gradient_checkpointing = value
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02)
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) if hasattr(self, "clip_txt_mapper") else None
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) if hasattr(self, "clip_img_mapper") else None
if hasattr(self, "effnet_mapper"):
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
if hasattr(self, "pixels_mapper"):
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
nn.init.constant_(self.clf[1].weight, 0) # outputs
# blocks
for level_block in self.down_blocks + self.up_blocks:
for block in level_block:
if isinstance(block, SDCascadeResBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks[0]))
elif isinstance(block, SDCascadeTimestepBlock):
nn.init.constant_(block.mapper.weight, 0)
def get_timestep_ratio_embedding(self, timestep_ratio, max_positions=10000):
r = timestep_ratio * max_positions
half_dim = self.config.timestep_ratio_embedding_dim // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.config.timestep_ratio_embedding_dim % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode="constant")
return emb.to(dtype=r.dtype)
def get_clip_embeddings(self, clip_txt_pooled, clip_txt=None, clip_img=None):
if len(clip_txt_pooled.shape) == 2:
clip_txt_pool = clip_txt_pooled.unsqueeze(1)
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(
clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.config.clip_seq, -1
)
if clip_txt is not None and clip_img is not None:
clip_txt = self.clip_txt_mapper(clip_txt)
if len(clip_img.shape) == 2:
clip_img = clip_img.unsqueeze(1)
clip_img = self.clip_img_mapper(clip_img).view(
clip_img.size(0), clip_img.size(1) * self.config.clip_seq, -1
)
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
else:
clip = clip_txt_pool
return self.clip_norm(clip)
def _down_encode(self, x, r_embed, clip):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, SDCascadeResBlock):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
elif isinstance(block, SDCascadeAttnBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, clip, use_reentrant=False
)
elif isinstance(block, SDCascadeTimestepBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, r_embed, use_reentrant=False
)
else:
x = x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), use_reentrant=False
)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
else:
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, SDCascadeResBlock):
x = block(x)
elif isinstance(block, SDCascadeAttnBlock):
x = block(x, clip)
elif isinstance(block, SDCascadeTimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, SDCascadeResBlock):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
orig_type = x.dtype
x = torch.nn.functional.interpolate(
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
)
x = x.to(orig_type)
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, skip, use_reentrant=False
)
elif isinstance(block, SDCascadeAttnBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, clip, use_reentrant=False
)
elif isinstance(block, SDCascadeTimestepBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, r_embed, use_reentrant=False
)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
else:
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, SDCascadeResBlock):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
orig_type = x.dtype
x = torch.nn.functional.interpolate(
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
)
x = x.to(orig_type)
x = block(x, skip)
elif isinstance(block, SDCascadeAttnBlock):
x = block(x, clip)
elif isinstance(block, SDCascadeTimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
return x
def forward(
self,
sample,
timestep_ratio,
clip_text_pooled,
clip_text=None,
clip_img=None,
effnet=None,
pixels=None,
sca=None,
crp=None,
return_dict=True,
):
if pixels is None:
pixels = sample.new_zeros(sample.size(0), 3, 8, 8)
# Process the conditioning embeddings
timestep_ratio_embed = self.get_timestep_ratio_embedding(timestep_ratio)
for c in self.config.timestep_conditioning_type:
if c == "sca":
cond = sca
elif c == "crp":
cond = crp
else:
cond = None
t_cond = cond or torch.zeros_like(timestep_ratio)
timestep_ratio_embed = torch.cat([timestep_ratio_embed, self.get_timestep_ratio_embedding(t_cond)], dim=1)
clip = self.get_clip_embeddings(clip_txt_pooled=clip_text_pooled, clip_txt=clip_text, clip_img=clip_img)
# Model Blocks
x = self.embedding(sample)
if hasattr(self, "effnet_mapper") and effnet is not None:
x = x + self.effnet_mapper(
nn.functional.interpolate(effnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
)
if hasattr(self, "pixels_mapper"):
x = x + nn.functional.interpolate(
self.pixels_mapper(pixels), size=x.shape[-2:], mode="bilinear", align_corners=True
)
level_outputs = self._down_encode(x, timestep_ratio_embed, clip)
x = self._up_decode(level_outputs, timestep_ratio_embed, clip)
sample = self.clf(x)
if not return_dict:
return (sample,)
return StableCascadeUNetOutput(sample=sample)
|