File size: 31,162 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from math import ceil
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
from ...models import StableCascadeUNet
from ...schedulers import DDPMWuerstchenScheduler
from ...utils import BaseOutput, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:]
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableCascadePriorPipeline
>>> prior_pipe = StableCascadePriorPipeline.from_pretrained(
... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16
... ).to("cuda")
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
>>> prior_output = pipe(prompt)
```
"""
@dataclass
class StableCascadePriorPipelineOutput(BaseOutput):
"""
Output class for WuerstchenPriorPipeline.
Args:
image_embeddings (`torch.Tensor` or `np.ndarray`)
Prior image embeddings for text prompt
prompt_embeds (`torch.Tensor`):
Text embeddings for the prompt.
negative_prompt_embeds (`torch.Tensor`):
Text embeddings for the negative prompt.
"""
image_embeddings: Union[torch.Tensor, np.ndarray]
prompt_embeds: Union[torch.Tensor, np.ndarray]
prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
negative_prompt_embeds: Union[torch.Tensor, np.ndarray]
negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
class StableCascadePriorPipeline(DiffusionPipeline):
"""
Pipeline for generating image prior for Stable Cascade.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
prior ([`StableCascadeUNet`]):
The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
feature_extractor ([`~transformers.CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `image_encoder`.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
scheduler ([`DDPMWuerstchenScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
resolution_multiple ('float', *optional*, defaults to 42.67):
Default resolution for multiple images generated.
"""
unet_name = "prior"
text_encoder_name = "text_encoder"
model_cpu_offload_seq = "image_encoder->text_encoder->prior"
_optional_components = ["image_encoder", "feature_extractor"]
_callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
prior: StableCascadeUNet,
scheduler: DDPMWuerstchenScheduler,
resolution_multiple: float = 42.67,
feature_extractor: Optional[CLIPImageProcessor] = None,
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
) -> None:
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
prior=prior,
scheduler=scheduler,
)
self.register_to_config(resolution_multiple=resolution_multiple)
def prepare_latents(
self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler
):
latent_shape = (
num_images_per_prompt * batch_size,
self.prior.config.in_channels,
ceil(height / self.config.resolution_multiple),
ceil(width / self.config.resolution_multiple),
)
if latents is None:
latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != latent_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def encode_prompt(
self,
device,
batch_size,
num_images_per_prompt,
do_classifier_free_guidance,
prompt=None,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_pooled: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
):
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True
)
prompt_embeds = text_encoder_output.hidden_states[-1]
if prompt_embeds_pooled is None:
prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
if negative_prompt_embeds is None and do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds_text_encoder_output = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=uncond_input.attention_mask.to(device),
output_hidden_states=True,
)
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1]
negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
seq_len = negative_prompt_embeds_pooled.shape[1]
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to(
dtype=self.text_encoder.dtype, device=device
)
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view(
batch_size * num_images_per_prompt, seq_len, -1
)
# done duplicates
return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled
def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt):
image_embeds = []
for image in images:
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embed = self.image_encoder(image).image_embeds.unsqueeze(1)
image_embeds.append(image_embed)
image_embeds = torch.cat(image_embeds, dim=1)
image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1)
negative_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, negative_image_embeds
def check_inputs(
self,
prompt,
images=None,
image_embeds=None,
negative_prompt=None,
prompt_embeds=None,
prompt_embeds_pooled=None,
negative_prompt_embeds=None,
negative_prompt_embeds_pooled=None,
callback_on_step_end_tensor_inputs=None,
):
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and prompt_embeds_pooled is None:
raise ValueError(
"If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`"
)
if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`"
)
if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None:
if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape:
raise ValueError(
"`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed"
f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !="
f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}."
)
if image_embeds is not None and images is not None:
raise ValueError(
f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to"
" only forward one of the two."
)
if images:
for i, image in enumerate(images):
if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise TypeError(
f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got"
f"{type(image)} for image number {i}."
)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
s = torch.tensor([0.003])
clamp_range = [0, 1]
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
var = alphas_cumprod[t]
var = var.clamp(*clamp_range)
s, min_var = s.to(var.device), min_var.to(var.device)
ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
return ratio
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 20,
timesteps: List[float] = None,
guidance_scale: float = 4.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_pooled: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pt",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 60):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 8.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
linked to the text `prompt`, usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `decoder_guidance_scale` is less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_embeds_pooled (`torch.Tensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
input argument.
image_embeds (`torch.Tensor`, *optional*):
Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If
not provided, image embeddings will be generated from `image` input argument if existing.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
embeddings.
"""
# 0. Define commonly used variables
device = self._execution_device
dtype = next(self.prior.parameters()).dtype
self._guidance_scale = guidance_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
images=images,
image_embeds=image_embeds,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_pooled=prompt_embeds_pooled,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
# 2. Encode caption + images
(
prompt_embeds,
prompt_embeds_pooled,
negative_prompt_embeds,
negative_prompt_embeds_pooled,
) = self.encode_prompt(
prompt=prompt,
device=device,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_pooled=prompt_embeds_pooled,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
)
if images is not None:
image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image(
images=images,
device=device,
dtype=dtype,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
)
elif image_embeds is not None:
image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1)
uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled)
else:
image_embeds_pooled = torch.zeros(
batch_size * num_images_per_prompt,
1,
self.prior.config.clip_image_in_channels,
device=device,
dtype=dtype,
)
uncond_image_embeds_pooled = torch.zeros(
batch_size * num_images_per_prompt,
1,
self.prior.config.clip_image_in_channels,
device=device,
dtype=dtype,
)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0)
else:
image_embeds = image_embeds_pooled
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_encoder_hidden_states = (
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
)
text_encoder_pooled = (
torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled])
if negative_prompt_embeds is not None
else prompt_embeds_pooled
)
# 4. Prepare and set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latents
latents = self.prepare_latents(
batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
)
if isinstance(self.scheduler, DDPMWuerstchenScheduler):
timesteps = timesteps[:-1]
else:
if self.scheduler.config.clip_sample:
self.scheduler.config.clip_sample = False # disample sample clipping
logger.warning(" set `clip_sample` to be False")
# 6. Run denoising loop
if hasattr(self.scheduler, "betas"):
alphas = 1.0 - self.scheduler.betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
else:
alphas_cumprod = []
self._num_timesteps = len(timesteps)
for i, t in enumerate(self.progress_bar(timesteps)):
if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
if len(alphas_cumprod) > 0:
timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
else:
timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
else:
timestep_ratio = t.expand(latents.size(0)).to(dtype)
# 7. Denoise image embeddings
predicted_image_embedding = self.prior(
sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio,
clip_text_pooled=text_encoder_pooled,
clip_text=text_encoder_hidden_states,
clip_img=image_embeds,
return_dict=False,
)[0]
# 8. Check for classifier free guidance and apply it
if self.do_classifier_free_guidance:
predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2)
predicted_image_embedding = torch.lerp(
predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale
)
# 9. Renoise latents to next timestep
if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
timestep_ratio = t
latents = self.scheduler.step(
model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator
).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# Offload all models
self.maybe_free_model_hooks()
if output_type == "np":
latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
negative_prompt_embeds = (
negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None
) # float() as bfloat16-> numpy doesnt work
if not return_dict:
return (
latents,
prompt_embeds,
prompt_embeds_pooled,
negative_prompt_embeds,
negative_prompt_embeds_pooled,
)
return StableCascadePriorPipelineOutput(
image_embeddings=latents,
prompt_embeds=prompt_embeds,
prompt_embeds_pooled=prompt_embeds_pooled,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
)
|