File size: 10,987 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import unittest
import torch
from diffusers import UNet2DModel
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
require_torch_accelerator,
slow,
torch_all_close,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (4, 8),
"norm_num_groups": 2,
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": 3,
"out_channels": 3,
"in_channels": 3,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_mid_block_attn_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["add_attention"] = True
init_dict["attn_norm_num_groups"] = 4
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
self.assertIsNotNone(
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not."
)
self.assertEqual(
model.mid_block.attentions[0].group_norm.num_groups,
init_dict["attn_norm_num_groups"],
"Mid block Attention group norm does not have the expected number of groups.",
)
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"layers_per_block": 2,
"block_out_channels": (32, 64),
"attention_head_dim": 32,
"down_block_types": ("DownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "UpBlock2D"),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@require_torch_accelerator
def test_from_pretrained_accelerate(self):
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@require_torch_accelerator
def test_from_pretrained_accelerate_wont_change_results(self):
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model_accelerate.to(torch_device)
model_accelerate.eval()
noise = torch.randn(
1,
model_accelerate.config.in_channels,
model_accelerate.config.sample_size,
model_accelerate.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
arr_accelerate = model_accelerate(noise, time_step)["sample"]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
model_normal_load, _ = UNet2DModel.from_pretrained(
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
)
model_normal_load.to(torch_device)
model_normal_load.eval()
arr_normal_load = model_normal_load(noise, time_step)["sample"]
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
def test_output_pretrained(self):
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
model.eval()
model.to(torch_device)
noise = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64, 64, 64],
"in_channels": 3,
"layers_per_block": 1,
"out_channels": 3,
"time_embedding_type": "fourier",
"norm_eps": 1e-6,
"mid_block_scale_factor": math.sqrt(2.0),
"norm_num_groups": None,
"down_block_types": [
"SkipDownBlock2D",
"AttnSkipDownBlock2D",
"SkipDownBlock2D",
"SkipDownBlock2D",
],
"up_block_types": [
"SkipUpBlock2D",
"SkipUpBlock2D",
"AttnSkipUpBlock2D",
"SkipUpBlock2D",
],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@slow
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
inputs = self.dummy_input
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
inputs["sample"] = noise
image = model(**inputs)
assert image is not None, "Make sure output is not None"
@slow
def test_output_pretrained_ve_mid(self):
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (256, 256)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_output_pretrained_ve_large(self):
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_forward_with_norm_groups(self):
# not required for this model
pass
|