File size: 11,480 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
import tempfile
import unittest

import numpy as np
import torch

from diffusers import MotionAdapter, UNet2DConditionModel, UNetMotionModel
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    torch_device,
)

from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin


logger = logging.get_logger(__name__)

enable_full_determinism()


class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = UNetMotionModel
    main_input_name = "sample"

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        num_frames = 4
        sizes = (16, 16)

        noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
        encoder_hidden_states = floats_tensor((batch_size, 4, 16)).to(torch_device)

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
        return (4, 4, 16, 16)

    @property
    def output_shape(self):
        return (4, 4, 16, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (16, 32),
            "norm_num_groups": 16,
            "down_block_types": ("CrossAttnDownBlockMotion", "DownBlockMotion"),
            "up_block_types": ("UpBlockMotion", "CrossAttnUpBlockMotion"),
            "cross_attention_dim": 16,
            "num_attention_heads": 2,
            "out_channels": 4,
            "in_channels": 4,
            "layers_per_block": 1,
            "sample_size": 16,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_unet2d(self):
        torch.manual_seed(0)
        unet2d = UNet2DConditionModel()

        torch.manual_seed(1)
        model = self.model_class.from_unet2d(unet2d)
        model_state_dict = model.state_dict()

        for param_name, param_value in unet2d.named_parameters():
            self.assertTrue(torch.equal(model_state_dict[param_name], param_value))

    def test_freeze_unet2d(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.freeze_unet2d_params()

        for param_name, param_value in model.named_parameters():
            if "motion_modules" not in param_name:
                self.assertFalse(param_value.requires_grad)

            else:
                self.assertTrue(param_value.requires_grad)

    def test_loading_motion_adapter(self):
        model = self.model_class()
        adapter = MotionAdapter()
        model.load_motion_modules(adapter)

        for idx, down_block in enumerate(model.down_blocks):
            adapter_state_dict = adapter.down_blocks[idx].motion_modules.state_dict()
            for param_name, param_value in down_block.motion_modules.named_parameters():
                self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value))

        for idx, up_block in enumerate(model.up_blocks):
            adapter_state_dict = adapter.up_blocks[idx].motion_modules.state_dict()
            for param_name, param_value in up_block.motion_modules.named_parameters():
                self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value))

        mid_block_adapter_state_dict = adapter.mid_block.motion_modules.state_dict()
        for param_name, param_value in model.mid_block.motion_modules.named_parameters():
            self.assertTrue(torch.equal(mid_block_adapter_state_dict[param_name], param_value))

    def test_saving_motion_modules(self):
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_motion_modules(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")))

            adapter_loaded = MotionAdapter.from_pretrained(tmpdirname)

            torch.manual_seed(0)
            model_loaded = self.model_class(**init_dict)
            model_loaded.load_motion_modules(adapter_loaded)
            model_loaded.to(torch_device)

        with torch.no_grad():
            output = model(**inputs_dict)[0]
            output_loaded = model_loaded(**inputs_dict)[0]

        max_diff = (output - output_loaded).abs().max().item()
        self.assertLessEqual(max_diff, 1e-4, "Models give different forward passes")

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_enable_works(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.enable_xformers_memory_efficient_attention()

        assert (
            model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
            == "XFormersAttnProcessor"
        ), "xformers is not enabled"

    def test_gradient_checkpointing_is_applied(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model_class_copy = copy.copy(self.model_class)

        modules_with_gc_enabled = {}

        # now monkey patch the following function:
        #     def _set_gradient_checkpointing(self, module, value=False):
        #         if hasattr(module, "gradient_checkpointing"):
        #             module.gradient_checkpointing = value

        def _set_gradient_checkpointing_new(self, module, value=False):
            if hasattr(module, "gradient_checkpointing"):
                module.gradient_checkpointing = value
                modules_with_gc_enabled[module.__class__.__name__] = True

        model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new

        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

        EXPECTED_SET = {
            "CrossAttnUpBlockMotion",
            "CrossAttnDownBlockMotion",
            "UNetMidBlockCrossAttnMotion",
            "UpBlockMotion",
            "Transformer2DModel",
            "DownBlockMotion",
        }

        assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

    def test_feed_forward_chunking(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        init_dict["block_out_channels"] = (32, 64)
        init_dict["norm_num_groups"] = 32

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)[0]

        model.enable_forward_chunking()
        with torch.no_grad():
            output_2 = model(**inputs_dict)[0]

        self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
        assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2

    def test_pickle(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample = model(**inputs_dict).sample

        sample_copy = copy.copy(sample)

        assert (sample - sample_copy).abs().max() < 1e-4

    def test_from_save_pretrained(self, expected_max_diff=5e-5):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, safe_serialization=False)
            torch.manual_seed(0)
            new_model = self.model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        with torch.no_grad():
            image = model(**inputs_dict)
            if isinstance(image, dict):
                image = image.to_tuple()[0]

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
                new_image = new_image.to_tuple()[0]

        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")

    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)

            torch.manual_seed(0)
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
            image = model(**inputs_dict)
            if isinstance(image, dict):
                image = image.to_tuple()[0]

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
                new_image = new_image.to_tuple()[0]

        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")

    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")