File size: 11,286 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import PIL.Image
import torch

from diffusers.image_processor import VaeImageProcessor


class ImageProcessorTest(unittest.TestCase):
    @property
    def dummy_sample(self):
        batch_size = 1
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_mask(self):
        batch_size = 1
        num_channels = 1
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    def to_np(self, image):
        if isinstance(image[0], PIL.Image.Image):
            return np.stack([np.array(i) for i in image], axis=0)
        elif isinstance(image, torch.Tensor):
            return image.cpu().numpy().transpose(0, 2, 3, 1)
        return image

    def test_vae_image_processor_pt(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)

        input_pt = self.dummy_sample
        input_np = self.to_np(input_pt)

        for output_type in ["pt", "np", "pil"]:
            out = image_processor.postprocess(
                image_processor.preprocess(input_pt),
                output_type=output_type,
            )
            out_np = self.to_np(out)
            in_np = (input_np * 255).round() if output_type == "pil" else input_np
            assert (
                np.abs(in_np - out_np).max() < 1e-6
            ), f"decoded output does not match input for output_type {output_type}"

    def test_vae_image_processor_np(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
        input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)

        for output_type in ["pt", "np", "pil"]:
            out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type)

            out_np = self.to_np(out)
            in_np = (input_np * 255).round() if output_type == "pil" else input_np
            assert (
                np.abs(in_np - out_np).max() < 1e-6
            ), f"decoded output does not match input for output_type {output_type}"

    def test_vae_image_processor_pil(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)

        input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
        input_pil = image_processor.numpy_to_pil(input_np)

        for output_type in ["pt", "np", "pil"]:
            out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type)
            for i, o in zip(input_pil, out):
                in_np = np.array(i)
                out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round()
                assert (
                    np.abs(in_np - out_np).max() < 1e-6
                ), f"decoded output does not match input for output_type {output_type}"

    def test_preprocess_input_3d(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)

        input_pt_4d = self.dummy_sample
        input_pt_3d = input_pt_4d.squeeze(0)

        out_pt_4d = image_processor.postprocess(
            image_processor.preprocess(input_pt_4d),
            output_type="np",
        )
        out_pt_3d = image_processor.postprocess(
            image_processor.preprocess(input_pt_3d),
            output_type="np",
        )

        input_np_4d = self.to_np(self.dummy_sample)
        input_np_3d = input_np_4d.squeeze(0)

        out_np_4d = image_processor.postprocess(
            image_processor.preprocess(input_np_4d),
            output_type="np",
        )
        out_np_3d = image_processor.postprocess(
            image_processor.preprocess(input_np_3d),
            output_type="np",
        )

        assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6
        assert np.abs(out_np_4d - out_np_3d).max() < 1e-6

    def test_preprocess_input_list(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)

        input_pt_4d = self.dummy_sample
        input_pt_list = list(input_pt_4d)

        out_pt_4d = image_processor.postprocess(
            image_processor.preprocess(input_pt_4d),
            output_type="np",
        )

        out_pt_list = image_processor.postprocess(
            image_processor.preprocess(input_pt_list),
            output_type="np",
        )

        input_np_4d = self.to_np(self.dummy_sample)
        input_np_list = list(input_np_4d)

        out_np_4d = image_processor.postprocess(
            image_processor.preprocess(input_np_4d),
            output_type="np",
        )

        out_np_list = image_processor.postprocess(
            image_processor.preprocess(input_np_list),
            output_type="np",
        )

        assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6
        assert np.abs(out_np_4d - out_np_list).max() < 1e-6

    def test_preprocess_input_mask_3d(self):
        image_processor = VaeImageProcessor(
            do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )

        input_pt_4d = self.dummy_mask
        input_pt_3d = input_pt_4d.squeeze(0)
        input_pt_2d = input_pt_3d.squeeze(0)

        out_pt_4d = image_processor.postprocess(
            image_processor.preprocess(input_pt_4d),
            output_type="np",
        )
        out_pt_3d = image_processor.postprocess(
            image_processor.preprocess(input_pt_3d),
            output_type="np",
        )

        out_pt_2d = image_processor.postprocess(
            image_processor.preprocess(input_pt_2d),
            output_type="np",
        )

        input_np_4d = self.to_np(self.dummy_mask)
        input_np_3d = input_np_4d.squeeze(0)
        input_np_3d_1 = input_np_4d.squeeze(-1)
        input_np_2d = input_np_3d.squeeze(-1)

        out_np_4d = image_processor.postprocess(
            image_processor.preprocess(input_np_4d),
            output_type="np",
        )
        out_np_3d = image_processor.postprocess(
            image_processor.preprocess(input_np_3d),
            output_type="np",
        )

        out_np_3d_1 = image_processor.postprocess(
            image_processor.preprocess(input_np_3d_1),
            output_type="np",
        )

        out_np_2d = image_processor.postprocess(
            image_processor.preprocess(input_np_2d),
            output_type="np",
        )

        assert np.abs(out_pt_4d - out_pt_3d).max() == 0
        assert np.abs(out_pt_4d - out_pt_2d).max() == 0
        assert np.abs(out_np_4d - out_np_3d).max() == 0
        assert np.abs(out_np_4d - out_np_3d_1).max() == 0
        assert np.abs(out_np_4d - out_np_2d).max() == 0

    def test_preprocess_input_mask_list(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)

        input_pt_4d = self.dummy_mask
        input_pt_3d = input_pt_4d.squeeze(0)
        input_pt_2d = input_pt_3d.squeeze(0)

        inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d]
        inputs_pt_list = [[input_pt] for input_pt in inputs_pt]

        for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list):
            out_pt = image_processor.postprocess(
                image_processor.preprocess(input_pt),
                output_type="np",
            )
            out_pt_list = image_processor.postprocess(
                image_processor.preprocess(input_pt_list),
                output_type="np",
            )
            assert np.abs(out_pt - out_pt_list).max() < 1e-6

        input_np_4d = self.to_np(self.dummy_mask)
        input_np_3d = input_np_4d.squeeze(0)
        input_np_2d = input_np_3d.squeeze(-1)

        inputs_np = [input_np_4d, input_np_3d, input_np_2d]
        inputs_np_list = [[input_np] for input_np in inputs_np]

        for input_np, input_np_list in zip(inputs_np, inputs_np_list):
            out_np = image_processor.postprocess(
                image_processor.preprocess(input_np),
                output_type="np",
            )
            out_np_list = image_processor.postprocess(
                image_processor.preprocess(input_np_list),
                output_type="np",
            )
            assert np.abs(out_np - out_np_list).max() < 1e-6

    def test_preprocess_input_mask_3d_batch(self):
        image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)

        # create a dummy mask input with batch_size 2
        dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0)

        # squeeze out the channel dimension
        input_pt_3d = dummy_mask_batch.squeeze(1)
        input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1)

        input_pt_3d_list = list(input_pt_3d)
        input_np_3d_list = list(input_np_3d)

        out_pt_3d = image_processor.postprocess(
            image_processor.preprocess(input_pt_3d),
            output_type="np",
        )
        out_pt_3d_list = image_processor.postprocess(
            image_processor.preprocess(input_pt_3d_list),
            output_type="np",
        )

        assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6

        out_np_3d = image_processor.postprocess(
            image_processor.preprocess(input_np_3d),
            output_type="np",
        )
        out_np_3d_list = image_processor.postprocess(
            image_processor.preprocess(input_np_3d_list),
            output_type="np",
        )

        assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6

    def test_vae_image_processor_resize_pt(self):
        image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
        input_pt = self.dummy_sample
        b, c, h, w = input_pt.shape
        scale = 2
        out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale)
        exp_pt_shape = (b, c, h // scale, w // scale)
        assert (
            out_pt.shape == exp_pt_shape
        ), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'."

    def test_vae_image_processor_resize_np(self):
        image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
        input_pt = self.dummy_sample
        b, c, h, w = input_pt.shape
        scale = 2
        input_np = self.to_np(input_pt)
        out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale)
        exp_np_shape = (b, h // scale, w // scale, c)
        assert (
            out_np.shape == exp_np_shape
        ), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."