File size: 7,483 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import PIL.Image
import torch
from parameterized import parameterized
from diffusers.video_processor import VideoProcessor
np.random.seed(0)
torch.manual_seed(0)
class VideoProcessorTest(unittest.TestCase):
def get_dummy_sample(self, input_type):
batch_size = 1
num_frames = 5
num_channels = 3
height = 8
width = 8
def generate_image():
return PIL.Image.fromarray(np.random.randint(0, 256, size=(height, width, num_channels)).astype("uint8"))
def generate_4d_array():
return np.random.rand(num_frames, height, width, num_channels)
def generate_5d_array():
return np.random.rand(batch_size, num_frames, height, width, num_channels)
def generate_4d_tensor():
return torch.rand(num_frames, num_channels, height, width)
def generate_5d_tensor():
return torch.rand(batch_size, num_frames, num_channels, height, width)
if input_type == "list_images":
sample = [generate_image() for _ in range(num_frames)]
elif input_type == "list_list_images":
sample = [[generate_image() for _ in range(num_frames)] for _ in range(num_frames)]
elif input_type == "list_4d_np":
sample = [generate_4d_array() for _ in range(num_frames)]
elif input_type == "list_list_4d_np":
sample = [[generate_4d_array() for _ in range(num_frames)] for _ in range(num_frames)]
elif input_type == "list_5d_np":
sample = [generate_5d_array() for _ in range(num_frames)]
elif input_type == "5d_np":
sample = generate_5d_array()
elif input_type == "list_4d_pt":
sample = [generate_4d_tensor() for _ in range(num_frames)]
elif input_type == "list_list_4d_pt":
sample = [[generate_4d_tensor() for _ in range(num_frames)] for _ in range(num_frames)]
elif input_type == "list_5d_pt":
sample = [generate_5d_tensor() for _ in range(num_frames)]
elif input_type == "5d_pt":
sample = generate_5d_tensor()
return sample
def to_np(self, video):
# List of images.
if isinstance(video[0], PIL.Image.Image):
video = np.stack([np.array(i) for i in video], axis=0)
# List of list of images.
elif isinstance(video, list) and isinstance(video[0][0], PIL.Image.Image):
frames = []
for vid in video:
all_current_frames = np.stack([np.array(i) for i in vid], axis=0)
frames.append(all_current_frames)
video = np.stack([np.array(frame) for frame in frames], axis=0)
# List of 4d/5d {ndarrays, torch tensors}.
elif isinstance(video, list) and isinstance(video[0], (torch.Tensor, np.ndarray)):
if isinstance(video[0], np.ndarray):
video = np.stack(video, axis=0) if video[0].ndim == 4 else np.concatenate(video, axis=0)
else:
if video[0].ndim == 4:
video = np.stack([i.cpu().numpy().transpose(0, 2, 3, 1) for i in video], axis=0)
elif video[0].ndim == 5:
video = np.concatenate([i.cpu().numpy().transpose(0, 1, 3, 4, 2) for i in video], axis=0)
# List of list of 4d/5d {ndarrays, torch tensors}.
elif (
isinstance(video, list)
and isinstance(video[0], list)
and isinstance(video[0][0], (torch.Tensor, np.ndarray))
):
all_frames = []
for list_of_videos in video:
temp_frames = []
for vid in list_of_videos:
if vid.ndim == 4:
current_vid_frames = np.stack(
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(1, 2, 0) for i in vid],
axis=0,
)
elif vid.ndim == 5:
current_vid_frames = np.concatenate(
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(0, 2, 3, 1) for i in vid],
axis=0,
)
temp_frames.append(current_vid_frames)
temp_frames = np.stack(temp_frames, axis=0)
all_frames.append(temp_frames)
video = np.concatenate(all_frames, axis=0)
# Just 5d {ndarrays, torch tensors}.
elif isinstance(video, (torch.Tensor, np.ndarray)) and video.ndim == 5:
video = video if isinstance(video, np.ndarray) else video.cpu().numpy().transpose(0, 1, 3, 4, 2)
return video
@parameterized.expand(["list_images", "list_list_images"])
def test_video_processor_pil(self, input_type):
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
input = self.get_dummy_sample(input_type=input_type)
for output_type in ["pt", "np", "pil"]:
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
out_np = self.to_np(out)
input_np = self.to_np(input).astype("float32") / 255.0 if output_type != "pil" else self.to_np(input)
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
@parameterized.expand(["list_4d_np", "list_5d_np", "5d_np"])
def test_video_processor_np(self, input_type):
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
input = self.get_dummy_sample(input_type=input_type)
for output_type in ["pt", "np", "pil"]:
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
out_np = self.to_np(out)
input_np = (
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input)
)
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
@parameterized.expand(["list_4d_pt", "list_5d_pt", "5d_pt"])
def test_video_processor_pt(self, input_type):
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
input = self.get_dummy_sample(input_type=input_type)
for output_type in ["pt", "np", "pil"]:
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
out_np = self.to_np(out)
input_np = (
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input)
)
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
|