File size: 8,766 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel

from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
    require_torch_gpu,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = ShapEImg2ImgPipeline
    params = ["image"]
    batch_params = ["image"]
    required_optional_params = [
        "num_images_per_prompt",
        "num_inference_steps",
        "generator",
        "latents",
        "guidance_scale",
        "frame_size",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    @property
    def text_embedder_hidden_size(self):
        return 16

    @property
    def time_input_dim(self):
        return 16

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def renderer_dim(self):
        return 8

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            image_size=32,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=24,
            num_attention_heads=2,
            num_channels=3,
            num_hidden_layers=5,
            patch_size=1,
        )

        model = CLIPVisionModel(config)
        return model

    @property
    def dummy_image_processor(self):
        image_processor = CLIPImageProcessor(
            crop_size=224,
            do_center_crop=True,
            do_normalize=True,
            do_resize=True,
            image_mean=[0.48145466, 0.4578275, 0.40821073],
            image_std=[0.26862954, 0.26130258, 0.27577711],
            resample=3,
            size=224,
        )

        return image_processor

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 16,
            "embedding_dim": self.time_input_dim,
            "num_embeddings": 32,
            "embedding_proj_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "num_layers": 1,
            "clip_embed_dim": self.time_input_dim * 2,
            "additional_embeddings": 0,
            "time_embed_act_fn": "gelu",
            "norm_in_type": "layer",
            "embedding_proj_norm_type": "layer",
            "encoder_hid_proj_type": None,
            "added_emb_type": None,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_renderer(self):
        torch.manual_seed(0)

        model_kwargs = {
            "param_shapes": (
                (self.renderer_dim, 93),
                (self.renderer_dim, 8),
                (self.renderer_dim, 8),
                (self.renderer_dim, 8),
            ),
            "d_latent": self.time_input_dim,
            "d_hidden": self.renderer_dim,
            "n_output": 12,
            "background": (
                0.1,
                0.1,
                0.1,
            ),
        }
        model = ShapERenderer(**model_kwargs)
        return model

    def get_dummy_components(self):
        prior = self.dummy_prior
        image_encoder = self.dummy_image_encoder
        image_processor = self.dummy_image_processor
        shap_e_renderer = self.dummy_renderer

        scheduler = HeunDiscreteScheduler(
            beta_schedule="exp",
            num_train_timesteps=1024,
            prediction_type="sample",
            use_karras_sigmas=True,
            clip_sample=True,
            clip_sample_range=1.0,
        )
        components = {
            "prior": prior,
            "image_encoder": image_encoder,
            "image_processor": image_processor,
            "shap_e_renderer": shap_e_renderer,
            "scheduler": scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image": input_image,
            "generator": generator,
            "num_inference_steps": 1,
            "frame_size": 32,
            "output_type": "latent",
        }
        return inputs

    def test_shap_e(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images[0]
        image_slice = image[-3:, -3:].cpu().numpy()

        assert image.shape == (32, 16)

        expected_slice = np.array(
            [-1.0, 0.40668195, 0.57322013, -0.9469888, 0.4283227, 0.30348337, -0.81094897, 0.74555075, 0.15342723]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_inference_batch_consistent(self):
        # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
        self._test_inference_batch_consistent(batch_sizes=[2])

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            batch_size=2,
            expected_max_diff=6e-3,
        )

    def test_num_images_per_prompt(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_size = 1
        num_images_per_prompt = 2

        inputs = self.get_dummy_inputs(torch_device)

        for key in inputs.keys():
            if key in self.batch_params:
                inputs[key] = batch_size * [inputs[key]]

        images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]

        assert images.shape[0] == batch_size * num_images_per_prompt

    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1e-1)

    def test_save_load_local(self):
        super().test_save_load_local(expected_max_difference=5e-3)

    @unittest.skip("Key error is raised with accelerate")
    def test_sequential_cpu_offload_forward_pass(self):
        pass


@nightly
@require_torch_gpu
class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_shap_e_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/shap_e/test_shap_e_img2img_out.npy"
        )
        pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img")
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=torch_device).manual_seed(0)

        images = pipe(
            input_image,
            generator=generator,
            guidance_scale=3.0,
            num_inference_steps=64,
            frame_size=64,
            output_type="np",
        ).images[0]

        assert images.shape == (20, 64, 64, 3)

        assert_mean_pixel_difference(images, expected_image)