File size: 12,786 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import glob
import os
from typing import Dict, List, Union

import safetensors.torch
import torch
from huggingface_hub import snapshot_download
from huggingface_hub.utils import validate_hf_hub_args

from diffusers import DiffusionPipeline, __version__
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, ONNX_WEIGHTS_NAME, WEIGHTS_NAME


class CheckpointMergerPipeline(DiffusionPipeline):
    """
    A class that supports merging diffusion models based on the discussion here:
    https://github.com/huggingface/diffusers/issues/877

    Example usage:-

    pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")

    merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)

    merged_pipe.to('cuda')

    prompt = "An astronaut riding a unicycle on Mars"

    results = merged_pipe(prompt)

    ## For more details, see the docstring for the merge method.

    """

    def __init__(self):
        self.register_to_config()
        super().__init__()

    def _compare_model_configs(self, dict0, dict1):
        if dict0 == dict1:
            return True
        else:
            config0, meta_keys0 = self._remove_meta_keys(dict0)
            config1, meta_keys1 = self._remove_meta_keys(dict1)
            if config0 == config1:
                print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
                return True
        return False

    def _remove_meta_keys(self, config_dict: Dict):
        meta_keys = []
        temp_dict = config_dict.copy()
        for key in config_dict.keys():
            if key.startswith("_"):
                temp_dict.pop(key)
                meta_keys.append(key)
        return (temp_dict, meta_keys)

    @torch.no_grad()
    @validate_hf_hub_args
    def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
        """
        Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
        in the argument 'pretrained_model_name_or_path_list' as a list.

        Parameters:
        -----------
            pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.

            **kwargs:
                Supports all the default DiffusionPipeline.get_config_dict kwargs viz..

                cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, torch_dtype, device_map.

                alpha - The interpolation parameter. Ranges from 0 to 1.  It affects the ratio in which the checkpoints are merged. A 0.8 alpha
                    would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2

                interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None.
                    Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported.

                force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.

                variant - which variant of a pretrained model to load, e.g. "fp16" (None)

        """
        # Default kwargs from DiffusionPipeline
        cache_dir = kwargs.pop("cache_dir", None)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        token = kwargs.pop("token", None)
        variant = kwargs.pop("variant", None)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)
        device_map = kwargs.pop("device_map", None)

        alpha = kwargs.pop("alpha", 0.5)
        interp = kwargs.pop("interp", None)

        print("Received list", pretrained_model_name_or_path_list)
        print(f"Combining with alpha={alpha}, interpolation mode={interp}")

        checkpoint_count = len(pretrained_model_name_or_path_list)
        # Ignore result from model_index_json comparison of the two checkpoints
        force = kwargs.pop("force", False)

        # If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
        if checkpoint_count > 3 or checkpoint_count < 2:
            raise ValueError(
                "Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
                " passed."
            )

        print("Received the right number of checkpoints")
        # chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
        # chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None

        # Validate that the checkpoints can be merged
        # Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
        config_dicts = []
        for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
            config_dict = DiffusionPipeline.load_config(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
            config_dicts.append(config_dict)

        comparison_result = True
        for idx in range(1, len(config_dicts)):
            comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
            if not force and comparison_result is False:
                raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
        print("Compatible model_index.json files found")
        # Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
        cached_folders = []
        for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [
                WEIGHTS_NAME,
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                ONNX_WEIGHTS_NAME,
                DiffusionPipeline.config_name,
            ]
            requested_pipeline_class = config_dict.get("_class_name")
            user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}

            cached_folder = (
                pretrained_model_name_or_path
                if os.path.isdir(pretrained_model_name_or_path)
                else snapshot_download(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    allow_patterns=allow_patterns,
                    user_agent=user_agent,
                )
            )
            print("Cached Folder", cached_folder)
            cached_folders.append(cached_folder)

        # Step 3:-
        # Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place
        final_pipe = DiffusionPipeline.from_pretrained(
            cached_folders[0],
            torch_dtype=torch_dtype,
            device_map=device_map,
            variant=variant,
        )
        final_pipe.to(self.device)

        checkpoint_path_2 = None
        if len(cached_folders) > 2:
            checkpoint_path_2 = os.path.join(cached_folders[2])

        if interp == "sigmoid":
            theta_func = CheckpointMergerPipeline.sigmoid
        elif interp == "inv_sigmoid":
            theta_func = CheckpointMergerPipeline.inv_sigmoid
        elif interp == "add_diff":
            theta_func = CheckpointMergerPipeline.add_difference
        else:
            theta_func = CheckpointMergerPipeline.weighted_sum

        # Find each module's state dict.
        for attr in final_pipe.config.keys():
            if not attr.startswith("_"):
                checkpoint_path_1 = os.path.join(cached_folders[1], attr)
                if os.path.exists(checkpoint_path_1):
                    files = [
                        *glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
                        *glob.glob(os.path.join(checkpoint_path_1, "*.bin")),
                    ]
                    checkpoint_path_1 = files[0] if len(files) > 0 else None
                if len(cached_folders) < 3:
                    checkpoint_path_2 = None
                else:
                    checkpoint_path_2 = os.path.join(cached_folders[2], attr)
                    if os.path.exists(checkpoint_path_2):
                        files = [
                            *glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
                            *glob.glob(os.path.join(checkpoint_path_2, "*.bin")),
                        ]
                        checkpoint_path_2 = files[0] if len(files) > 0 else None
                # For an attr if both checkpoint_path_1 and 2 are None, ignore.
                # If at least one is present, deal with it according to interp method, of course only if the state_dict keys match.
                if checkpoint_path_1 is None and checkpoint_path_2 is None:
                    print(f"Skipping {attr}: not present in 2nd or 3d model")
                    continue
                try:
                    module = getattr(final_pipe, attr)
                    if isinstance(module, bool):  # ignore requires_safety_checker boolean
                        continue
                    theta_0 = getattr(module, "state_dict")
                    theta_0 = theta_0()

                    update_theta_0 = getattr(module, "load_state_dict")
                    theta_1 = (
                        safetensors.torch.load_file(checkpoint_path_1)
                        if (checkpoint_path_1.endswith(".safetensors"))
                        else torch.load(checkpoint_path_1, map_location="cpu")
                    )
                    theta_2 = None
                    if checkpoint_path_2:
                        theta_2 = (
                            safetensors.torch.load_file(checkpoint_path_2)
                            if (checkpoint_path_2.endswith(".safetensors"))
                            else torch.load(checkpoint_path_2, map_location="cpu")
                        )

                    if not theta_0.keys() == theta_1.keys():
                        print(f"Skipping {attr}: key mismatch")
                        continue
                    if theta_2 and not theta_1.keys() == theta_2.keys():
                        print(f"Skipping {attr}:y mismatch")
                except Exception as e:
                    print(f"Skipping {attr} do to an unexpected error: {str(e)}")
                    continue
                print(f"MERGING {attr}")

                for key in theta_0.keys():
                    if theta_2:
                        theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
                    else:
                        theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)

                del theta_1
                del theta_2
                update_theta_0(theta_0)

                del theta_0
        return final_pipe

    @staticmethod
    def weighted_sum(theta0, theta1, theta2, alpha):
        return ((1 - alpha) * theta0) + (alpha * theta1)

    # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    @staticmethod
    def sigmoid(theta0, theta1, theta2, alpha):
        alpha = alpha * alpha * (3 - (2 * alpha))
        return theta0 + ((theta1 - theta0) * alpha)

    # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    @staticmethod
    def inv_sigmoid(theta0, theta1, theta2, alpha):
        import math

        alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
        return theta0 + ((theta1 - theta0) * alpha)

    @staticmethod
    def add_difference(theta0, theta1, theta2, alpha):
        return theta0 + (theta1 - theta2) * (1.0 - alpha)