File size: 23,495 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import math
import os
import random
from pathlib import Path
import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import torch.utils.checkpoint
import transformers
from datasets import load_dataset
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import create_repo, upload_folder
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
from diffusers import (
FlaxAutoencoderKL,
FlaxDDPMScheduler,
FlaxPNDMScheduler,
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.30.0.dev0")
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--from_pt",
action="store_true",
default=False,
help="Flag to indicate whether to convert models from PyTorch.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
return args
dataset_name_mapping = {
"lambdalabs/naruto-blip-captions": ("image", "text"),
}
def get_params_to_save(params):
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
def main():
args = parse_args()
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if jax.process_index() == 0:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
input_ids = inputs.input_ids
return input_ids
train_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = [example["input_ids"] for example in examples]
padded_tokens = tokenizer.pad(
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
)
batch = {
"pixel_values": pixel_values,
"input_ids": padded_tokens.input_ids,
}
batch = {k: v.numpy() for k, v in batch.items()}
return batch
total_train_batch_size = args.train_batch_size * jax.local_device_count()
train_dataloader = torch.utils.data.DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=total_train_batch_size, drop_last=True
)
weight_dtype = jnp.float32
if args.mixed_precision == "fp16":
weight_dtype = jnp.float16
elif args.mixed_precision == "bf16":
weight_dtype = jnp.bfloat16
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
from_pt=args.from_pt,
revision=args.revision,
subfolder="tokenizer",
)
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
from_pt=args.from_pt,
revision=args.revision,
subfolder="text_encoder",
dtype=weight_dtype,
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
from_pt=args.from_pt,
revision=args.revision,
subfolder="vae",
dtype=weight_dtype,
)
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
from_pt=args.from_pt,
revision=args.revision,
subfolder="unet",
dtype=weight_dtype,
)
# Optimization
if args.scale_lr:
args.learning_rate = args.learning_rate * total_train_batch_size
constant_scheduler = optax.constant_schedule(args.learning_rate)
adamw = optax.adamw(
learning_rate=constant_scheduler,
b1=args.adam_beta1,
b2=args.adam_beta2,
eps=args.adam_epsilon,
weight_decay=args.adam_weight_decay,
)
optimizer = optax.chain(
optax.clip_by_global_norm(args.max_grad_norm),
adamw,
)
state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
noise_scheduler = FlaxDDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
noise_scheduler_state = noise_scheduler.create_state()
# Initialize our training
rng = jax.random.PRNGKey(args.seed)
train_rngs = jax.random.split(rng, jax.local_device_count())
def train_step(state, text_encoder_params, vae_params, batch, train_rng):
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
def compute_loss(params):
# Convert images to latent space
vae_outputs = vae.apply(
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
)
latents = vae_outputs.latent_dist.sample(sample_rng)
# (NHWC) -> (NCHW)
latents = jnp.transpose(latents, (0, 3, 1, 2))
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise_rng, timestep_rng = jax.random.split(sample_rng)
noise = jax.random.normal(noise_rng, latents.shape)
# Sample a random timestep for each image
bsz = latents.shape[0]
timesteps = jax.random.randint(
timestep_rng,
(bsz,),
0,
noise_scheduler.config.num_train_timesteps,
)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(
batch["input_ids"],
params=text_encoder_params,
train=False,
)[0]
# Predict the noise residual and compute loss
model_pred = unet.apply(
{"params": params}, noisy_latents, timesteps, encoder_hidden_states, train=True
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = (target - model_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics, new_train_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
text_encoder_params = jax_utils.replicate(text_encoder.params)
vae_params = jax_utils.replicate(vae_params)
# Train!
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Scheduler and math around the number of training steps.
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
for epoch in epochs:
# ======================== Training ================================
train_metrics = []
steps_per_epoch = len(train_dataset) // total_train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_dataloader:
batch = shard(batch)
state, train_metric, train_rngs = p_train_step(state, text_encoder_params, vae_params, batch, train_rngs)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
global_step += 1
if global_step >= args.max_train_steps:
break
train_metric = jax_utils.unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
# Create the pipeline using using the trained modules and save it.
if jax.process_index() == 0:
scheduler = FlaxPNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", from_pt=True
)
pipeline = FlaxStableDiffusionPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
)
pipeline.save_pretrained(
args.output_dir,
params={
"text_encoder": get_params_to_save(text_encoder_params),
"vae": get_params_to_save(vae_params),
"unet": get_params_to_save(state.params),
"safety_checker": safety_checker.params,
},
)
if args.push_to_hub:
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
if __name__ == "__main__":
main()
|