File size: 9,478 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
}
def get_dummy_components(self):
torch.manual_seed(0)
transformer = UVit2DModel(
hidden_size=8,
use_bias=False,
hidden_dropout=0.0,
cond_embed_dim=8,
micro_cond_encode_dim=2,
micro_cond_embed_dim=10,
encoder_hidden_size=8,
vocab_size=32,
codebook_size=32, # codebook size needs to be consistent with num_vq_embeddings for inpaint tests
in_channels=8,
block_out_channels=8,
num_res_blocks=1,
downsample=True,
upsample=True,
block_num_heads=1,
num_hidden_layers=1,
num_attention_heads=1,
attention_dropout=0.0,
intermediate_size=8,
layer_norm_eps=1e-06,
ln_elementwise_affine=True,
)
scheduler = AmusedScheduler(mask_token_id=31)
torch.manual_seed(0)
vqvae = VQModel(
act_fn="silu",
block_out_channels=[8],
down_block_types=[
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=8,
layers_per_block=1,
norm_num_groups=8,
num_vq_embeddings=32, # reducing this to 16 or 8 -> RuntimeError: "cdist_cuda" not implemented for 'Half'
out_channels=3,
sample_size=8,
up_block_types=[
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=8,
intermediate_size=8,
layer_norm_eps=1e-05,
num_attention_heads=1,
num_hidden_layers=1,
pad_token_id=1,
vocab_size=1000,
projection_dim=8,
)
text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"transformer": transformer,
"scheduler": scheduler,
"vqvae": vqvae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device)
mask_image = torch.full((1, 1, 4, 4), 1.0, dtype=torch.float32, device=device)
mask_image[0, 0, 0, 0] = 0
mask_image[0, 0, 0, 1] = 0
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
"image": image,
"mask_image": mask_image,
}
return inputs
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)
@unittest.skip("aMUSEd does not support lists of generators")
def test_inference_batch_single_identical(self):
...
@slow
@require_torch_gpu
class AmusedInpaintPipelineSlowTests(unittest.TestCase):
def test_amused_256(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((256, 256))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634])
assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_256_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((256, 256))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0735, 0.0749, 0.0650, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622])
assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_512(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((512, 512))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0])
assert np.abs(image_slice - expected_slice).max() < 0.05
def test_amused_512_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((512, 512))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0025, 0.0])
assert np.abs(image_slice - expected_slice).max() < 3e-3
|