File size: 9,594 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import DDPMWuerstchenScheduler, StableCascadeCombinedPipeline
from diffusers.models import StableCascadeUNet
from diffusers.pipelines.wuerstchen import PaellaVQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableCascadeCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableCascadeCombinedPipeline
    params = ["prompt"]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "prior_guidance_scale",
        "decoder_guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "prior_num_inference_steps",
        "output_type",
    ]
    test_xformers_attention = True

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "conditioning_dim": 128,
            "block_out_channels": (128, 128),
            "num_attention_heads": (2, 2),
            "down_num_layers_per_block": (1, 1),
            "up_num_layers_per_block": (1, 1),
            "clip_image_in_channels": 768,
            "switch_level": (False,),
            "clip_text_in_channels": self.text_embedder_hidden_size,
            "clip_text_pooled_in_channels": self.text_embedder_hidden_size,
        }

        model = StableCascadeUNet(**model_kwargs)
        return model.eval()

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            projection_dim=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config).eval()

    @property
    def dummy_vqgan(self):
        torch.manual_seed(0)

        model_kwargs = {
            "bottleneck_blocks": 1,
            "num_vq_embeddings": 2,
        }
        model = PaellaVQModel(**model_kwargs)
        return model.eval()

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)
        model_kwargs = {
            "in_channels": 4,
            "out_channels": 4,
            "conditioning_dim": 128,
            "block_out_channels": (16, 32, 64, 128),
            "num_attention_heads": (-1, -1, 1, 2),
            "down_num_layers_per_block": (1, 1, 1, 1),
            "up_num_layers_per_block": (1, 1, 1, 1),
            "down_blocks_repeat_mappers": (1, 1, 1, 1),
            "up_blocks_repeat_mappers": (3, 3, 2, 2),
            "block_types_per_layer": (
                ("SDCascadeResBlock", "SDCascadeTimestepBlock"),
                ("SDCascadeResBlock", "SDCascadeTimestepBlock"),
                ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
                ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
            ),
            "switch_level": None,
            "clip_text_pooled_in_channels": 32,
            "dropout": (0.1, 0.1, 0.1, 0.1),
        }

        model = StableCascadeUNet(**model_kwargs)
        return model.eval()

    def get_dummy_components(self):
        prior = self.dummy_prior

        scheduler = DDPMWuerstchenScheduler()
        tokenizer = self.dummy_tokenizer
        text_encoder = self.dummy_text_encoder
        decoder = self.dummy_decoder
        vqgan = self.dummy_vqgan
        prior_text_encoder = self.dummy_text_encoder
        prior_tokenizer = self.dummy_tokenizer

        components = {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "decoder": decoder,
            "scheduler": scheduler,
            "vqgan": vqgan,
            "prior_text_encoder": prior_text_encoder,
            "prior_tokenizer": prior_tokenizer,
            "prior_prior": prior,
            "prior_scheduler": scheduler,
            "prior_feature_extractor": None,
            "prior_image_encoder": None,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_guidance_scale": 4.0,
            "decoder_guidance_scale": 4.0,
            "num_inference_steps": 2,
            "prior_num_inference_steps": 2,
            "output_type": "np",
            "height": 128,
            "width": 128,
        }
        return inputs

    def test_stable_cascade(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[-3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)

        expected_slice = np.array([0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0])
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=2e-2)

    @unittest.skip(reason="fp16 not supported")
    def test_float16_inference(self):
        super().test_float16_inference()

    @unittest.skip(reason="no callback test for combined pipeline")
    def test_callback_inputs(self):
        super().test_callback_inputs()

    def test_stable_cascade_combined_prompt_embeds(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = StableCascadeCombinedPipeline(**components)
        pipe.set_progress_bar_config(disable=None)

        prompt = "A photograph of a shiba inu, wearing a hat"
        (
            prompt_embeds,
            prompt_embeds_pooled,
            negative_prompt_embeds,
            negative_prompt_embeds_pooled,
        ) = pipe.prior_pipe.encode_prompt(device, 1, 1, False, prompt=prompt)
        generator = torch.Generator(device=device)

        output_prompt = pipe(
            prompt=prompt,
            num_inference_steps=1,
            prior_num_inference_steps=1,
            output_type="np",
            generator=generator.manual_seed(0),
        )
        output_prompt_embeds = pipe(
            prompt=None,
            prompt_embeds=prompt_embeds,
            prompt_embeds_pooled=prompt_embeds_pooled,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
            num_inference_steps=1,
            prior_num_inference_steps=1,
            output_type="np",
            generator=generator.manual_seed(0),
        )

        assert np.abs(output_prompt.images - output_prompt_embeds.images).max() < 1e-5