File size: 4,159 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gc
import tempfile
import unittest

import torch

from diffusers import EulerDiscreteScheduler, StableDiffusionPipeline
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    require_torch_gpu,
    slow,
)

from .single_file_testing_utils import (
    SDSingleFileTesterMixin,
    download_original_config,
    download_single_file_checkpoint,
)


enable_full_determinism()


@slow
@require_torch_gpu
class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionPipeline
    ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
    original_config = (
        "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
    )
    repo_id = "runwayml/stable-diffusion-v1-5"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "generator": generator,
            "num_inference_steps": 2,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)

    def test_single_file_legacy_scheduler_loading(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            ckpt_filename = self.ckpt_path.split("/")[-1]
            local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
            local_original_config = download_original_config(self.original_config, tmpdir)

            pipe = self.pipeline_class.from_single_file(
                local_ckpt_path,
                original_config=local_original_config,
                cache_dir=tmpdir,
                local_files_only=True,
                scheduler_type="euler",
            )

        # Default is PNDM for this checkpoint
        assert isinstance(pipe.scheduler, EulerDiscreteScheduler)

    def test_single_file_legacy_scaling_factor(self):
        new_scaling_factor = 10.0
        init_pipe = self.pipeline_class.from_single_file(self.ckpt_path)
        pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor)

        assert init_pipe.vae.config.scaling_factor != new_scaling_factor
        assert pipe.vae.config.scaling_factor == new_scaling_factor


@slow
class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionPipeline
    ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors"
    original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
    repo_id = "stabilityai/stable-diffusion-2-1"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "generator": generator,
            "num_inference_steps": 2,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)