File size: 13,963 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
 <!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Textual Inversion

[Textual Inversion](https://hf.co/papers/2208.01618) is a training technique for personalizing image generation models with just a few example images of what you want it to learn. This technique works by learning and updating the text embeddings (the new embeddings are tied to a special word you must use in the prompt) to match the example images you provide.

If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. With the same configuration and setup as PyTorch, the Flax training script should be at least ~70% faster!

This guide will explore the [textual_inversion.py](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py) script to help you become more familiar with it, and how you can adapt it for your own use-case.

Before running the script, make sure you install the library from source:

```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```

Navigate to the example folder with the training script and install the required dependencies for the script you're using:

<hfoptions id="installation">
<hfoption id="PyTorch">

```bash
cd examples/textual_inversion
pip install -r requirements.txt
```

</hfoption>
<hfoption id="Flax">

```bash
cd examples/textual_inversion
pip install -r requirements_flax.txt
```

</hfoption>
</hfoptions>

<Tip>

πŸ€— Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the πŸ€— Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.

</Tip>

Initialize an πŸ€— Accelerate environment:

```bash
accelerate config
```

To setup a default πŸ€— Accelerate environment without choosing any configurations:

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell, like a notebook, you can use:

```py
from accelerate.utils import write_basic_config

write_basic_config()
```

Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.

<Tip>

The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py) and let us know if you have any questions or concerns.

</Tip>

## Script parameters

The training script has many parameters to help you tailor the training run to your needs. All of the parameters and their descriptions are listed in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/839c2a5ece0af4e75530cb520d77bc7ed8acf474/examples/textual_inversion/textual_inversion.py#L176) function. Where applicable, Diffusers provides default values for each parameter such as the training batch size and learning rate, but feel free to change these values in the training command if you'd like.

For example, to increase the number of gradient accumulation steps above the default value of 1:

```bash
accelerate launch textual_inversion.py \
  --gradient_accumulation_steps=4
```

Some other basic and important parameters to specify include:

- `--pretrained_model_name_or_path`: the name of the model on the Hub or a local path to the pretrained model
- `--train_data_dir`: path to a folder containing the training dataset (example images)
- `--output_dir`: where to save the trained model
- `--push_to_hub`: whether to push the trained model to the Hub
- `--checkpointing_steps`: frequency of saving a checkpoint as the model trains; this is useful if for some reason training is interrupted, you can continue training from that checkpoint by adding `--resume_from_checkpoint` to your training command
- `--num_vectors`: the number of vectors to learn the embeddings with; increasing this parameter helps the model learn better but it comes with increased training costs
- `--placeholder_token`: the special word to tie the learned embeddings to (you must use the word in your prompt for inference)
- `--initializer_token`: a single-word that roughly describes the object or style you're trying to train on
- `--learnable_property`: whether you're training the model to learn a new "style" (for example, Van Gogh's painting style) or "object" (for example, your dog)

## Training script

Unlike some of the other training scripts, textual_inversion.py has a custom dataset class, [`TextualInversionDataset`](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L487) for creating a dataset. You can customize the image size, placeholder token, interpolation method, whether to crop the image, and more. If you need to change how the dataset is created, you can modify `TextualInversionDataset`.

Next, you'll find the dataset preprocessing code and training loop in the [`main()`](https://github.com/huggingface/diffusers/blob/839c2a5ece0af4e75530cb520d77bc7ed8acf474/examples/textual_inversion/textual_inversion.py#L573) function.

The script starts by loading the [tokenizer](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L616), [scheduler and model](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L622):

```py
# Load tokenizer
if args.tokenizer_name:
    tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
    tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")

# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(
    args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
    args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
```

The special [placeholder token](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L632) is added next to the tokenizer, and the embedding is readjusted to account for the new token.

Then, the script [creates a dataset](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L716) from the `TextualInversionDataset`:

```py
train_dataset = TextualInversionDataset(
    data_root=args.train_data_dir,
    tokenizer=tokenizer,
    size=args.resolution,
    placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
    repeats=args.repeats,
    learnable_property=args.learnable_property,
    center_crop=args.center_crop,
    set="train",
)
train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
)
```

Finally, the [training loop](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L784) handles everything else from predicting the noisy residual to updating the embedding weights of the special placeholder token.

If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.

## Launch the script

Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! πŸš€

For this guide, you'll download some images of a [cat toy](https://huggingface.co/datasets/diffusers/cat_toy_example) and store them in a directory. But remember, you can create and use your own dataset if you want (see the [Create a dataset for training](create_dataset) guide).

```py
from huggingface_hub import snapshot_download

local_dir = "./cat"
snapshot_download(
    "diffusers/cat_toy_example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes"
)
```

Set the environment variable `MODEL_NAME` to a model id on the Hub or a path to a local model, and `DATA_DIR`  to the path where you just downloaded the cat images to. The script creates and saves the following files to your repository:

- `learned_embeds.bin`: the learned embedding vectors corresponding to your example images
- `token_identifier.txt`: the special placeholder token
- `type_of_concept.txt`: the type of concept you're training on (either "object" or "style")

<Tip warning={true}>

A full training run takes ~1 hour on a single V100 GPU.

</Tip>

One more thing before you launch the script. If you're interested in following along with the training process, you can periodically save generated images as training progresses. Add the following parameters to the training command:

```bash
--validation_prompt="A <cat-toy> train"
--num_validation_images=4
--validation_steps=100
```

<hfoptions id="training-inference">
<hfoption id="PyTorch">

```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export DATA_DIR="./cat"

accelerate launch textual_inversion.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$DATA_DIR \
  --learnable_property="object" \
  --placeholder_token="<cat-toy>" \
  --initializer_token="toy" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=3000 \
  --learning_rate=5.0e-04 \
  --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --output_dir="textual_inversion_cat" \
  --push_to_hub
```

</hfoption>
<hfoption id="Flax">

```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export DATA_DIR="./cat"

python textual_inversion_flax.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$DATA_DIR \
  --learnable_property="object" \
  --placeholder_token="<cat-toy>" \
  --initializer_token="toy" \
  --resolution=512 \
  --train_batch_size=1 \
  --max_train_steps=3000 \
  --learning_rate=5.0e-04 \
  --scale_lr \
  --output_dir="textual_inversion_cat" \
  --push_to_hub
```

</hfoption>
</hfoptions>

After training is complete, you can use your newly trained model for inference like:

<hfoptions id="training-inference">
<hfoption id="PyTorch">

```py
from diffusers import StableDiffusionPipeline
import torch

pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("sd-concepts-library/cat-toy")
image = pipeline("A <cat-toy> train", num_inference_steps=50).images[0]
image.save("cat-train.png")
```

</hfoption>
<hfoption id="Flax">

Flax doesn't support the [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] method, but the textual_inversion_flax.py script [saves](https://github.com/huggingface/diffusers/blob/c0f058265161178f2a88849e92b37ffdc81f1dcc/examples/textual_inversion/textual_inversion_flax.py#L636C2-L636C2) the learned embeddings as a part of the model after training. This means you can use the model for inference like any other Flax model:

```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline

model_path = "path-to-your-trained-model"
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)

prompt = "A <cat-toy> train"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50

num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)

# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)

images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("cat-train.png")
```

</hfoption>
</hfoptions>

## Next steps

Congratulations on training your own Textual Inversion model! πŸŽ‰ To learn more about how to use your new model, the following guides may be helpful:

- Learn how to [load Textual Inversion embeddings](../using-diffusers/loading_adapters) and also use them as negative embeddings.
- Learn how to use [Textual Inversion](textual_inversion_inference) for inference with Stable Diffusion 1/2 and Stable Diffusion XL.