File size: 5,175 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import tempfile


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class Unconditional(ExamplesTestsAccelerate):
    def test_train_unconditional(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 2
                --num_epochs 1
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 2
                --learning_rate 1e-3
                --lr_warmup_steps 5
                """.split()

            run_command(self._launch_args + test_args, return_stdout=True)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_unconditional_checkpointing_checkpoints_total_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            initial_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 1
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 2
                --learning_rate 1e-3
                --lr_warmup_steps 5
                --checkpointing_steps=2
                --checkpoints_total_limit=2
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                # checkpoint-2 should have been deleted
                {"checkpoint-4", "checkpoint-6"},
            )

    def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            initial_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 1
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 1
                --learning_rate 1e-3
                --lr_warmup_steps 5
                --checkpointing_steps=2
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-4", "checkpoint-6"},
            )

            resume_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 2
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 1
                --learning_rate 1e-3
                --lr_warmup_steps 5
                --resume_from_checkpoint=checkpoint-6
                --checkpointing_steps=2
                --checkpoints_total_limit=2
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-10", "checkpoint-12"},
            )