File size: 13,720 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import re
from contextlib import nullcontext
from typing import Optional

from huggingface_hub.utils import validate_hf_hub_args

from ..utils import deprecate, is_accelerate_available, logging
from .single_file_utils import (
    SingleFileComponentError,
    convert_controlnet_checkpoint,
    convert_ldm_unet_checkpoint,
    convert_ldm_vae_checkpoint,
    convert_sd3_transformer_checkpoint_to_diffusers,
    convert_stable_cascade_unet_single_file_to_diffusers,
    create_controlnet_diffusers_config_from_ldm,
    create_unet_diffusers_config_from_ldm,
    create_vae_diffusers_config_from_ldm,
    fetch_diffusers_config,
    fetch_original_config,
    load_single_file_checkpoint,
)


logger = logging.get_logger(__name__)


if is_accelerate_available():
    from accelerate import init_empty_weights

    from ..models.modeling_utils import load_model_dict_into_meta


SINGLE_FILE_LOADABLE_CLASSES = {
    "StableCascadeUNet": {
        "checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers,
    },
    "UNet2DConditionModel": {
        "checkpoint_mapping_fn": convert_ldm_unet_checkpoint,
        "config_mapping_fn": create_unet_diffusers_config_from_ldm,
        "default_subfolder": "unet",
        "legacy_kwargs": {
            "num_in_channels": "in_channels",  # Legacy kwargs supported by `from_single_file` mapped to new args
        },
    },
    "AutoencoderKL": {
        "checkpoint_mapping_fn": convert_ldm_vae_checkpoint,
        "config_mapping_fn": create_vae_diffusers_config_from_ldm,
        "default_subfolder": "vae",
    },
    "ControlNetModel": {
        "checkpoint_mapping_fn": convert_controlnet_checkpoint,
        "config_mapping_fn": create_controlnet_diffusers_config_from_ldm,
    },
    "SD3Transformer2DModel": {
        "checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
}


def _get_mapping_function_kwargs(mapping_fn, **kwargs):
    parameters = inspect.signature(mapping_fn).parameters

    mapping_kwargs = {}
    for parameter in parameters:
        if parameter in kwargs:
            mapping_kwargs[parameter] = kwargs[parameter]

    return mapping_kwargs


class FromOriginalModelMixin:
    """
    Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model.
    """

    @classmethod
    @validate_hf_hub_args
    def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs):
        r"""
        Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model
        is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path_or_dict (`str`, *optional*):
                Can be either:
                    - A link to the `.safetensors` or `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub.
                    - A path to a local *file* containing the weights of the component model.
                    - A state dict containing the component model weights.
            config (`str`, *optional*):
                - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted
                  on the Hub.
                - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component
                  configs in Diffusers format.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            original_config (`str`, *optional*):
                Dict or path to a yaml file containing the configuration for the model in its original format.
                    If a dict is provided, it will be used to initialize the model configuration.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        ```py
        >>> from diffusers import StableCascadeUNet

        >>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
        >>> model = StableCascadeUNet.from_single_file(ckpt_path)
        ```
        """

        class_name = cls.__name__
        if class_name not in SINGLE_FILE_LOADABLE_CLASSES:
            raise ValueError(
                f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}"
            )

        pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None)
        if pretrained_model_link_or_path is not None:
            deprecation_message = (
                "Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes"
            )
            deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message)
            pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path

        config = kwargs.pop("config", None)
        original_config = kwargs.pop("original_config", None)

        if config is not None and original_config is not None:
            raise ValueError(
                "`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments"
            )

        resume_download = kwargs.pop("resume_download", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", None)
        subfolder = kwargs.pop("subfolder", None)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

        if isinstance(pretrained_model_link_or_path_or_dict, dict):
            checkpoint = pretrained_model_link_or_path_or_dict
        else:
            checkpoint = load_single_file_checkpoint(
                pretrained_model_link_or_path_or_dict,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                token=token,
                cache_dir=cache_dir,
                local_files_only=local_files_only,
                revision=revision,
            )

        mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[class_name]

        checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"]
        if original_config:
            if "config_mapping_fn" in mapping_functions:
                config_mapping_fn = mapping_functions["config_mapping_fn"]
            else:
                config_mapping_fn = None

            if config_mapping_fn is None:
                raise ValueError(
                    (
                        f"`original_config` has been provided for {class_name} but no mapping function"
                        "was found to convert the original config to a Diffusers config in"
                        "`diffusers.loaders.single_file_utils`"
                    )
                )

            if isinstance(original_config, str):
                # If original_config is a URL or filepath fetch the original_config dict
                original_config = fetch_original_config(original_config, local_files_only=local_files_only)

            config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs)
            diffusers_model_config = config_mapping_fn(
                original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs
            )
        else:
            if config:
                if isinstance(config, str):
                    default_pretrained_model_config_name = config
                else:
                    raise ValueError(
                        (
                            "Invalid `config` argument. Please provide a string representing a repo id"
                            "or path to a local Diffusers model repo."
                        )
                    )

            else:
                config = fetch_diffusers_config(checkpoint)
                default_pretrained_model_config_name = config["pretrained_model_name_or_path"]

                if "default_subfolder" in mapping_functions:
                    subfolder = mapping_functions["default_subfolder"]

                subfolder = subfolder or config.pop(
                    "subfolder", None
                )  # some configs contain a subfolder key, e.g. StableCascadeUNet

            diffusers_model_config = cls.load_config(
                pretrained_model_name_or_path=default_pretrained_model_config_name,
                subfolder=subfolder,
                local_files_only=local_files_only,
            )
            expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)

            # Map legacy kwargs to new kwargs
            if "legacy_kwargs" in mapping_functions:
                legacy_kwargs = mapping_functions["legacy_kwargs"]
                for legacy_key, new_key in legacy_kwargs.items():
                    if legacy_key in kwargs:
                        kwargs[new_key] = kwargs.pop(legacy_key)

            model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs}
            diffusers_model_config.update(model_kwargs)

        checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs)
        diffusers_format_checkpoint = checkpoint_mapping_fn(
            config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs
        )
        if not diffusers_format_checkpoint:
            raise SingleFileComponentError(
                f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint."
            )

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            model = cls.from_config(diffusers_model_config)

        if is_accelerate_available():
            unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)

        else:
            _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)

        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )

        if torch_dtype is not None:
            model.to(torch_dtype)

        model.eval()

        return model